设f(x)=4cos(ωx-π/6)sinωx-cos(2ωx+π),其中ω>0,求函数y=f(x)的值域,请看问题补充

f(x)=4cos(ωx-π/6)sinωx-cos(2ωx+π)=4(coswxcosπ/6+sinwxsinπ6)sinwx+cos2wx=2√3sinwxcoswx... f(x)=4cos(ωx-π/6)sinωx-cos(2ωx+π)
=4(coswxcosπ/6+sinwxsinπ6)sinwx+cos2wx
=2√3sinwxcoswx+2sin²wx+cos2wx
=√3sin2wx+1-cos2wx+cos2wx
=√3sin2wx+1
最大值1+√3,最小值1-√3

不懂这个最大值最小值怎么求出来的
展开
hbc3193034
2013-08-31 · TA获得超过10.5万个赞
知道大有可为答主
回答量:10.5万
采纳率:76%
帮助的人:1.4亿
展开全部
u=sinwx的最大值=1,最小值=-1,
∴f(x)=√3u+1的最大值=1+√3,最小值=1-√3.
可以吗?
追问
可以哦,采纳了,谢谢!
追答
别客气!
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式