自然数公理系统为什么不是完备的

 我来答
匿名用户
2017-01-06
展开全部
一、 0是自然数; 二、 每一个确定的自然数a,都有一个确定的后继数a' ,a'也是自然数(数a的后继数a'就是紧接在这个数后面的整数(a+1)。例如,1'=2,2'=3等等。) 可是仅有这两个公理还不够完整地描述自然数,因为满足这两条的有可能不是自然数系统。比如考虑由 0, 1 构成的数字系统,其中1的后继为0。这不符合我们对于自然数系统的期望,因为它只包含有限个数。因此,我们要对自然数结构再做一下限制: 三、 0不是任何自然数的后继数; 但这里面的漏洞防不胜防,此时仍不能排除如下的反例:数字系统 0, 1, 2, 3,其中3的后继是3。看来,我们设置的公理还不够严密。我们还得再加一条。 四、如果b、c的后继数都是自然数a,那么b = c; 最后,为了排除一些自然数中不应存在的数(如 0.3),同时也为了满足一会儿制定运算规则的需要,我们加上最后一条公理。 五、设S⊆N,且满足2个条件(i)0∈S;(ii)如果n∈S,那么n'∈S。则S是全体自然数的集合,即S=N。(这条公理也叫归纳公理,保证了数学归纳法的正确性) 注:归纳公理可以用来证明0是唯一不是后继数的自然数,因为令命题为“n=0或n为其它数的后继数”,那么满足归纳公设的条件。 若将只考虑正整数,则公理中的0要换成1,自然数要换成正整数。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式