请问各位数学系前辈及同僚一个有关有理数定义的问题:

总所周知,有理数Q:={x∈Z:x=(p/q)∧(q≠0)∧[(p,q)=1]},这也正印证了英文中quotient的缩写。但是我有个疑问,如果对所有无理数γ(比如说π或... 总所周知,有理数 Q:={x∈Z:x=(p/q)∧(q≠0)∧[(p,q)=1]},这也正印证了英文中quotient的缩写。但是我有个疑问,如果对所有无理数γ(比如说π或者是e等经典无理数)都除以无穷小(例如10^(-n)),那这个所谓的商不是也符合有理数的定义吗?至少在广义上来讲,它是符合定义“可以表示成两个整数的商”啊?
ps: 问题涉及到数论中的有理数与无理数定义(假设没有戴德金分割的影响),所以请前辈们仔细看下我的题目。再次谢谢大家的帮忙了~
展开
1052159002
2013-09-01 · TA获得超过227个赞
知道小有建树答主
回答量:309
采纳率:0%
帮助的人:118万
展开全部
无穷小是函数,而不是数。所谓的商如果硬要说存在,那就是无穷大,而无穷大不是实数
追问
先谢谢啦。我知道平时所说的无穷小是极限中的概念,我这里只不过是借用表达罢了。具体的问题涉及到数论中的有理数与无理数的定义表达,所以可能是我问的不是很清晰。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
wjl371116
2013-09-01 · 知道合伙人教育行家
wjl371116
知道合伙人教育行家
采纳数:15457 获赞数:67408

向TA提问 私信TA
展开全部
设α是无穷小,即limα=0;那么lim(π/α)=∞,∞不是有理数。
追问
谢谢,我知道我们平常所说的无穷小是极限里的概念 。我只不过借了这个词而已,具体我的意思你可能没明白。
追答
设m,n是两个互质的整数,那么有理数p=m/n;而无理数Q不能表为形如m/n的分数。
有理数对四则运算自封,即对有理数作四则运算,只能产生有理数。
无理数是对有理数作四则运算以外的运算,如开方而产生的。
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友4ad52c06bb
2013-09-01 · TA获得超过118个赞
知道小有建树答主
回答量:277
采纳率:0%
帮助的人:138万
展开全部
有理数和无理数的定义再看看吧,
追问
谢谢你的回答,但我想你把我的问题搞混了。我问的是在数论里的有关有理数与无理数分割与定义中的质疑。所以你可能没理解我的意思~
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式