高二数学题,图片上的第八题,解第二问就行

 我来答
KevinHpli
2013-09-01 · TA获得超过1421个赞
知道小有建树答主
回答量:751
采纳率:80%
帮助的人:933万
展开全部
由余弦定理:
cos∠AOB=(OA^2+OB^2-AB^2)/2OA*OB
∠AOB为锐角
则cos∠AOB>0
则OA^2+OB^2-AB^2>0

设A(x1,y1),B(x2,y2)
设直线方程为
y=kx+2
联立直线与椭圆
(4k^2+1)x^2+16kx+12=0

x1+x2=-16k/(4k^2+1)
x1x2=12/(4k^2+1)

而OA^2+OB^2-AB^2
=x1^2+y1^2+x^2+y2^2-(x1-x2)^2-(y1-y2)^2
=2(x1x2+y1y2)
而y1=kx1+2,y2=kx2+2
则原式=
2[x1x2+(kx1+2)(kx2+2)]
=2[k^2+1)x1x2+2k(x1+x2)+4]
带入伟达定理得
=2[12(k^2+1)/(4k^2+1)-32k^2/(4k^2+1)+4]>0

12(k^2+1)-32k^2+4(4k^2+1)>0
16-4k^2>0

-2<k<2
追答
取值范围为-2<k<2

正确答案请采纳哦,下次好帮你解答,谢谢
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式