设数列{an}为等差数列,且a5=14,a7=20,数列{Bn}的前n项和为Sn
3个回答
展开全部
设数列{an}为等差数列,且a5=14,a7=20。又等比数列{bn}的前n项和Sn,有S1+S2+S3=22,且a1=b1
(1)求数列 {an}的通项公式。
(2)求数列{bn}的通项公式
a5=a1+4d=14,a7=a1+6d=20,
所以d=3,a1=2,
所以 {an}=3n-1
a1=b1=2,
S1+S2+S3=b1+b1+b1*q+b1+b1*q+b1*q方=2+2+2q+2+2q+2*q方=22
解得q=2或q=-4
{bn}=2 ^n,或 分段{bn}=2*(-4) ^(n-1) (n≥2)
=2 (n=1)
(1)求数列 {an}的通项公式。
(2)求数列{bn}的通项公式
a5=a1+4d=14,a7=a1+6d=20,
所以d=3,a1=2,
所以 {an}=3n-1
a1=b1=2,
S1+S2+S3=b1+b1+b1*q+b1+b1*q+b1*q方=2+2+2q+2+2q+2*q方=22
解得q=2或q=-4
{bn}=2 ^n,或 分段{bn}=2*(-4) ^(n-1) (n≥2)
=2 (n=1)
展开全部
设数列{an}为等差数列,且a5=14,a7=20。又等比数列{bn}的前n项和Sn,有S1+S2+S3=22,且a1=b1
(1)求数列 {an}的通项公式。
(2)求数列{bn}的通项公式
a5=a1+4d=14,a7=a1+6d=20,
所以d=3,a1=2,
所以 {an}=3n-1
a1=b1=2,
S1+S2+S3=b1+b1+b1*q+b1+b1*q+b1*q方=2+2+2q+2+2q+2*q方=22
解得q=2或q=-4
{bn}=2 ^n,或 分段{bn}=2*(-4) ^(n-1) (n≥2)
=2 (n=1)
(1)求数列 {an}的通项公式。
(2)求数列{bn}的通项公式
a5=a1+4d=14,a7=a1+6d=20,
所以d=3,a1=2,
所以 {an}=3n-1
a1=b1=2,
S1+S2+S3=b1+b1+b1*q+b1+b1*q+b1*q方=2+2+2q+2+2q+2*q方=22
解得q=2或q=-4
{bn}=2 ^n,或 分段{bn}=2*(-4) ^(n-1) (n≥2)
=2 (n=1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
公差为(a7-a5)/2=3,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询