复变函数解析是什么意思
2个回答
展开全部
黄先生
2024-12-27 广告
2024-12-27 广告
矩阵切换器就是将一路或多路视音频信号分别传输给一个或者多个显示设备,如两台电脑主机要共用一个显示器,矩阵切换器可以将两台电脑主机上的内容renyi切换到同一个或多个显示器上;迈拓维矩矩阵切换器种类齐全,性价比高,支持多种控制方式,为工程商采...
点击进入详情页
本回答由黄先生提供
展开全部
解析函数analytic function
K.魏尔斯特拉斯将一个在圆盘上收敛的幂级数的和函数称为解析函数,而区域上的解析函数是指在区域内每一小圆邻域上都能表成幂级数的和的函数。关于解析函数的不同定义在20世纪初被证明是等价的。基于魏尔斯特拉斯的定义,区域上的解析函数可以看作是其内任一小圆邻域上幂级数的解析开拓 ,关于解析开拓的一般定义是,f(z)与g(z)分别是D与D*上的解析函数,若DÉD* ,且在D*上f(z)=g(z)。则称f(z)是g(z)由D*到D的解析开拓 。解析开拓的概念可以推广到这样的情形 :f(z)与g(z)分别是两个圆盘D1与D2上的幂级数,且D1∩D2≠ ,在D1∩D2上f(z)=g(z )则也称f与g互为解析开拓,把可以互为解析开拓的( f(z),Δ)的解析圆盘Δ全连起来,作成一个链。它们的并记作Ω,得到了Ω上的一个解析函数,称它为魏尔斯特拉斯的完全解析函数,这里可能出现这样的情形,在连成一个链的圆盘中,有一些圆盘重叠在一起,但在这些重叠圆盘的每一个上的解析函数都是不一样的,它们的每一个都称为完全解析函数的分支。这样的完全解析函数实际是一个多值函数。黎曼提出将多值解析函数中的那些重叠的圆盘看作是不同的“叶”,不使他们在求并的过程中只留下一个代表,于是形成了一种称为黎曼面的几何模型。将多值函数看作是定义于其黎曼曲面上的解析函数,这样多值解析函数变成了单值解析函数。
K.魏尔斯特拉斯将一个在圆盘上收敛的幂级数的和函数称为解析函数,而区域上的解析函数是指在区域内每一小圆邻域上都能表成幂级数的和的函数。关于解析函数的不同定义在20世纪初被证明是等价的。基于魏尔斯特拉斯的定义,区域上的解析函数可以看作是其内任一小圆邻域上幂级数的解析开拓 ,关于解析开拓的一般定义是,f(z)与g(z)分别是D与D*上的解析函数,若DÉD* ,且在D*上f(z)=g(z)。则称f(z)是g(z)由D*到D的解析开拓 。解析开拓的概念可以推广到这样的情形 :f(z)与g(z)分别是两个圆盘D1与D2上的幂级数,且D1∩D2≠ ,在D1∩D2上f(z)=g(z )则也称f与g互为解析开拓,把可以互为解析开拓的( f(z),Δ)的解析圆盘Δ全连起来,作成一个链。它们的并记作Ω,得到了Ω上的一个解析函数,称它为魏尔斯特拉斯的完全解析函数,这里可能出现这样的情形,在连成一个链的圆盘中,有一些圆盘重叠在一起,但在这些重叠圆盘的每一个上的解析函数都是不一样的,它们的每一个都称为完全解析函数的分支。这样的完全解析函数实际是一个多值函数。黎曼提出将多值解析函数中的那些重叠的圆盘看作是不同的“叶”,不使他们在求并的过程中只留下一个代表,于是形成了一种称为黎曼面的几何模型。将多值函数看作是定义于其黎曼曲面上的解析函数,这样多值解析函数变成了单值解析函数。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询