函数f(x)=-√2(sin2x+π/4)+6 sin x cos x-2cos²x+1
2013-09-01 · 知道合伙人教育行家
无脚鸟╰(⇀‸↼)╯
知道合伙人教育行家
向TA提问 私信TA
知道合伙人教育行家
采纳数:6742
获赞数:132156
现在为上海海事大学学生,在学习上有一定的经验,擅长数学。
向TA提问 私信TA
关注
展开全部
解:f(x)=-√2sin(2x+π/4)+6sinxcosx-2cos²x+1
=-√2(sin2xcosπ/4+cos2xsinπ/4)+3sin2x-2×(1+cos2x)/2+1
=-√2(√2/2·sin2x+√2/2·cos2x)+3sin2x-cos2x
=-sin2x-cos2x+3sin2x-cos2x
=2sin2x-2cos2x
=√[2²+(-2)²]sin(2x-π/4)
=2√2sin(2x-π/4)
1)最小正周期=2π/2=π
2)-π/2+2kπ≤2x-π/4≤π/2+2kπ k属于Z
-π/8+kπ≤x≤3π/8+kπ
递增区间[-π/8+kπ,3π/8+kπ]
∴f(x)在区间[0,π/2]上最大值为f(3π/8)=2√2,最小值为f(0)=-2
=-√2(sin2xcosπ/4+cos2xsinπ/4)+3sin2x-2×(1+cos2x)/2+1
=-√2(√2/2·sin2x+√2/2·cos2x)+3sin2x-cos2x
=-sin2x-cos2x+3sin2x-cos2x
=2sin2x-2cos2x
=√[2²+(-2)²]sin(2x-π/4)
=2√2sin(2x-π/4)
1)最小正周期=2π/2=π
2)-π/2+2kπ≤2x-π/4≤π/2+2kπ k属于Z
-π/8+kπ≤x≤3π/8+kπ
递增区间[-π/8+kπ,3π/8+kπ]
∴f(x)在区间[0,π/2]上最大值为f(3π/8)=2√2,最小值为f(0)=-2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询