如何学好高中数学 整理总结
展开全部
数学被形象的称作“思维的体操,智慧的火花”。数学是人类文化的重要组成部分,已成为公民所必须具备的一种基本素质,数学在形成人类理性思维的过程中发挥着独特的、不可替代的作用。而且在当今知识经济时代,数学正在从幕后走向台前,它与计算机技术的结合在许多方面直接为社会创造价值,推动了社会生产力的发展。作为衡量一个人能力的重要学科,从小学到高中绝大多数同学对它情有独钟,投入了大量的时间与精力.然而并非人人都是成功者,从而“惧怕”高中数学的现象在目前非常普遍,我们应当引起重视。尽力指导学生学会学习数学,要讲究科学的学习方法,提高学习效率,才能变被动为主动.我们采取以加强学法指导为主,化解分化点为辅的办法:
1.加强学法指导,培养良好学习习惯。
2.循序渐进,防止急躁。
3.研究学科特点,寻找最佳学习方法
4.加强辅导,化解分化点。
篇二:到个人中心里哦
我来试试
1、填空题后几题可能涉及向量数量积(以三角形、平行四边形、梯形、正六边形和圆锥曲线为载体,数形结合求数量积和参数)、基本不等式求最值及参数范围、数列与圆锥曲线基本量的计算,运用抽象函数的性质求函数值与解不等式、三角形的计算与三角求值,命题的否定与必要不充分条件也是易错点。
2、三角复习,应重视以图形为载体运用三角变换求角的方法与注意点,已知三角形的中线、角平分线或高等如何解三角形。
3、立体几何复习应关注符号语言表述的命题的真假判断,共(异)面的判断与证明、用性质定理寻找平行线与垂线的方法,运用三棱锥体积求点面距离。
4、解析几何要围绕主干知识——椭圆的方程和性质,运用圆心的轨迹、圆锥曲线的定义、性质、椭圆标准方程的变形、直线斜率、圆的性质和平面几何知识推证椭圆的一些基本性质,会对圆锥曲线中的存在性、唯一性、不变性、恒成立等性质进行论证、运用。
5、数列复习应重视对差、等比数列的综合运用。掌握证明一个数列不是等差(比)数列的方法,会用整数的基本性质和求不定方程整数解的方法求解数列的基本量,证明数列的一些基本性质(如无穷子数列项的整除性质和不等关系)。
6、应用题可从解三角形、概率、数列求和、函数、立几等模型出发构建数学模型,概率应用题应注意解题规范。
7、关注高等数学知识与竞赛试题在解题中的指导作用。
8、函数重点是论证函数的基本性质,难点是将函数与方程、不等式等知识结合,涉及求参数范围、解不等式、证明不等式,重视分类讨论在研究函数问题中的工具作用。
1.加强学法指导,培养良好学习习惯。
2.循序渐进,防止急躁。
3.研究学科特点,寻找最佳学习方法
4.加强辅导,化解分化点。
篇二:到个人中心里哦
我来试试
1、填空题后几题可能涉及向量数量积(以三角形、平行四边形、梯形、正六边形和圆锥曲线为载体,数形结合求数量积和参数)、基本不等式求最值及参数范围、数列与圆锥曲线基本量的计算,运用抽象函数的性质求函数值与解不等式、三角形的计算与三角求值,命题的否定与必要不充分条件也是易错点。
2、三角复习,应重视以图形为载体运用三角变换求角的方法与注意点,已知三角形的中线、角平分线或高等如何解三角形。
3、立体几何复习应关注符号语言表述的命题的真假判断,共(异)面的判断与证明、用性质定理寻找平行线与垂线的方法,运用三棱锥体积求点面距离。
4、解析几何要围绕主干知识——椭圆的方程和性质,运用圆心的轨迹、圆锥曲线的定义、性质、椭圆标准方程的变形、直线斜率、圆的性质和平面几何知识推证椭圆的一些基本性质,会对圆锥曲线中的存在性、唯一性、不变性、恒成立等性质进行论证、运用。
5、数列复习应重视对差、等比数列的综合运用。掌握证明一个数列不是等差(比)数列的方法,会用整数的基本性质和求不定方程整数解的方法求解数列的基本量,证明数列的一些基本性质(如无穷子数列项的整除性质和不等关系)。
6、应用题可从解三角形、概率、数列求和、函数、立几等模型出发构建数学模型,概率应用题应注意解题规范。
7、关注高等数学知识与竞赛试题在解题中的指导作用。
8、函数重点是论证函数的基本性质,难点是将函数与方程、不等式等知识结合,涉及求参数范围、解不等式、证明不等式,重视分类讨论在研究函数问题中的工具作用。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询