设f(x)={1/2sinx,0≤x≤π 0,x<0,x>π,求Φ(x)=∫(0→x)f(t)
2个回答
展开全部
设t=sinx,0≤x≤π2,则dt=cosxdx,从而,dx=dtcosx=dt1?t2,故I2=∫π20f(sinx)dx=∫10f(t)1?t2dt.设u=tanx,0≤x≤π4,则du=dxcos2x=dx1+u2,故I3=∫π40f(tanx)dx=∫10f(u)1+u2du.因为积分值与积分变量无关,故I2=∫10f(t)1?t2dt=∫10f(x)1?x2dx,I3=∫10f(u)1+u2du=∫10f(x)1+x2dx.因为f(x)>0,故当0<x<1时,f(x)1?x2>f(x)>f(x)1+x2.由定积分的保序性质可得,I2>I1>I3.故选:B.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询