4个回答
2013-09-02
展开全部
黑洞数又称陷阱数,是类具有奇特转换特性的整数。 任何一个数字不全相同整数,经有限“重排求差”操作,总会得某一个或一些数,这些数即为黑洞数。"重排求差"操作即组成该数得排后的最大数去重排的最小数。
举个例子,三位数的黑洞数为495
简易推导过程:随便找个数,如297,三个位上的数从小到大和从大到小各排一次,为972和279,相减,得693
按上面做法再做一次,得到594,再做一次,得到495
之后反复都得到495
再如,四位数的黑洞数有6174
神秘的6174-黑洞数
随便造一个四位数,如a1=1628,先把组成部分1628的四个数字由大到小排列得到a2=8621,再把1628的四个数字由小到大排列得a3=1268,用大的减去小的a2-a1=8621-1268=7353,把7353按上面的方法再作一遍,由大到小排列得7533,由小到大排列得3357,相减7533-3367=4176
把4176再重复一遍:7641-1467=6174。
如果再往下作,奇迹就出现了!7641-1467=6174,又回到6174。
这是偶然的吗?我们再随便举一个数1331,按上面的方法连续去做:
3311-1133=2178 8721-1278=7443 7443-3447=3996 9963-3699=6264
6624-2466=4174 7641-1467=6174
好啦!6174的“幽灵”又出现了,大家不妨试一试,对于任何一个数字不完全的四位数,最多运算7步,必然落入陷阱中。
这个黑洞数已经由印度数学家证明了。
在数学中由有很多有趣,有意义的规律等待我们去探索和研究,让我们在数学中得到更多的乐趣。
苏联的科普作家高基莫夫在他的著作《数学的敏感》一书中,提到了一个奇妙的四位数6174,并把它列作“没有揭开的秘密”。不过,近年来,由于数学爱好者的努力,已经开始拨开迷雾。
6174有什么奇妙之处?
请随便写出一个四位数,这个数的四个数字有相同的也不要紧,但这四个数不准完全相同,例如 3333、7777等都应该排除。
写出四位数后,把数中的各位数字按大到小的顺序和小到大的顺序重新排列,将得到由这四个数字组成的四位数中的最大者和最小者,两者相减,就得到另一个四位数。将组成这个四位数的四个数字施行同样的变换,又得到一个最大的数和最小的数,两者相减……这样循环下去,一定在经过若干次(最多7次)变换之后,得到6174。
例如,开始时我们取数8208,重新排列后最大数为8820,最小数为0288,8820—0288=8532;对8532重复以上过程:8532-2358=6174。这里,经过两步变换就掉入6174这个“陷阶”。
需要略加说明的是:以0开头的数,例如0288也得看成一个四位数。再如,我们开始取数2187,按要求进行变换:
2187 → 8721-1278=7443→7443-3447=3996→9963-3699=6264→6642-2466=4176→7641-1467=6174。
这里,经过五步变换就掉入了“陷阱”——6174。
拿6174 本身来试,只需一步:7641-1467=6174,就掉入“陷阱”祟也出不来了。
所有的四位数都会掉入6174设的陷阱,不信可以取一些数进行验证。验证之后,你不得不感叹6174的奇妙。
任何一个数字不全相同整数,经有限次“重排求差”操作,总会得某一个或一些数,这些数即为黑洞数。"重排求差"操作即组成该数得排后的最大数去重排的最小数。
举个例子,三位数的黑洞数为495
简易推导过程:随便找个数,如297,三个位上的数从小到大和从大到小各排一次,为972和279,相减,得693
按上面做法再做一次,得到594,再做一次,得到495
之后反复都得到495
再如,四位数的黑洞数有6174
神秘的6174-黑洞数
随便造一个四位数,如a1=1628,先把组成部分1628的四个数字由大到小排列得到a2=8621,再把1628的四个数字由小到大排列得a3=1268,用大的减去小的a2-a1=8621-1268=7353,把7353按上面的方法再作一遍,由大到小排列得7533,由小到大排列得3357,相减7533-3367=4176
把4176再重复一遍:7641-1467=6174。
如果再往下作,奇迹就出现了!7641-1467=6174,又回到6174。
这是偶然的吗?我们再随便举一个数1331,按上面的方法连续去做:
3311-1133=2178 8721-1278=7443 7443-3447=3996 9963-3699=6264
6624-2466=4174 7641-1467=6174
好啦!6174的“幽灵”又出现了,大家不妨试一试,对于任何一个数字不完全的四位数,最多运算7步,必然落入陷阱中。
这个黑洞数已经由印度数学家证明了。
在数学中由有很多有趣,有意义的规律等待我们去探索和研究,让我们在数学中得到更多的乐趣。
苏联的科普作家高基莫夫在他的著作《数学的敏感》一书中,提到了一个奇妙的四位数6174,并把它列作“没有揭开的秘密”。不过,近年来,由于数学爱好者的努力,已经开始拨开迷雾。
6174有什么奇妙之处?
请随便写出一个四位数,这个数的四个数字有相同的也不要紧,但这四个数不准完全相同,例如 3333、7777等都应该排除。
写出四位数后,把数中的各位数字按大到小的顺序和小到大的顺序重新排列,将得到由这四个数字组成的四位数中的最大者和最小者,两者相减,就得到另一个四位数。将组成这个四位数的四个数字施行同样的变换,又得到一个最大的数和最小的数,两者相减……这样循环下去,一定在经过若干次(最多7次)变换之后,得到6174。
例如,开始时我们取数8208,重新排列后最大数为8820,最小数为0288,8820—0288=8532;对8532重复以上过程:8532-2358=6174。这里,经过两步变换就掉入6174这个“陷阶”。
需要略加说明的是:以0开头的数,例如0288也得看成一个四位数。再如,我们开始取数2187,按要求进行变换:
2187 → 8721-1278=7443→7443-3447=3996→9963-3699=6264→6642-2466=4176→7641-1467=6174。
这里,经过五步变换就掉入了“陷阱”——6174。
拿6174 本身来试,只需一步:7641-1467=6174,就掉入“陷阱”祟也出不来了。
所有的四位数都会掉入6174设的陷阱,不信可以取一些数进行验证。验证之后,你不得不感叹6174的奇妙。
任何一个数字不全相同整数,经有限次“重排求差”操作,总会得某一个或一些数,这些数即为黑洞数。"重排求差"操作即组成该数得排后的最大数去重排的最小数。
2013-09-02
展开全部
数字黑洞495
只要你输入一个三位数,要求个,十,百位数字不相同,如不允许输入111,222等。那么
你把这三个数字按大小重新排列,得出最大数和最小数。再两者相减,得到一个新数,再重新排列,再相减,最后总会得到495这个数字,人称:数字黑洞。
举例:输入352,排列得532和235,相减得297;再排列得972和279,相减得693;排列得963和369,相减得594;再排列得954和459,相减得495。
应该只是一种数字规律吧,像这样的还有狠多,比如四位数的数字黑洞6174:
把一个四位数的四个数字由小至大排列,组成一个新数,又由大至小排列排列组成一个新数,这两个数相减,之后重复这个步骤,只要四位数的四个数字不重复,数字最终便会变成 6174。
例如 3109,9310 - 0139 = 9171,9711 - 1179 = 8532,8532 - 2358 = 6174。而 6174 这个数也会变成 6174,7641 - 1467 = 6174。
只要你输入一个三位数,要求个,十,百位数字不相同,如不允许输入111,222等。那么
你把这三个数字按大小重新排列,得出最大数和最小数。再两者相减,得到一个新数,再重新排列,再相减,最后总会得到495这个数字,人称:数字黑洞。
举例:输入352,排列得532和235,相减得297;再排列得972和279,相减得693;排列得963和369,相减得594;再排列得954和459,相减得495。
应该只是一种数字规律吧,像这样的还有狠多,比如四位数的数字黑洞6174:
把一个四位数的四个数字由小至大排列,组成一个新数,又由大至小排列排列组成一个新数,这两个数相减,之后重复这个步骤,只要四位数的四个数字不重复,数字最终便会变成 6174。
例如 3109,9310 - 0139 = 9171,9711 - 1179 = 8532,8532 - 2358 = 6174。而 6174 这个数也会变成 6174,7641 - 1467 = 6174。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2024-03-31
展开全部
黑洞数又称陷阱数,是类具有奇特转换特性的整数。 任何一个数字不全相同整数,经有限“重排求差”操作,总会得某一个或一些数,这些数即为黑洞数。"重排求差"操作即组成该数得排后的最大数去重排的最小数。 2一个表格里有1~9,除去3个数字,用剩下数来减,举个例子:除去357,924-681=243
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |