已知p:|2x-3|<1,q:x(x-3)<0,则p是q的
1个回答
展开全部
答案A
分析:解不等式先求出命题p:|2x-3|<1,表示的集合P,再求出命题q:x(x-3)<0表示的集合Q,然后判断两个集合的关系,进而根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.
解答:p:解不等式:|2x-3|<1得:
P={x|1<x<2},
q:解不等式:x(x-3)<0得:
Q={x|0<x<3}
∵P?Q
p是q的充分不必要条件
故选A.
点评:本题考查的知识点是充要条件的定义,当我们易求出命题表示的点集或数集的范时,可用先求出命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.
分析:解不等式先求出命题p:|2x-3|<1,表示的集合P,再求出命题q:x(x-3)<0表示的集合Q,然后判断两个集合的关系,进而根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.
解答:p:解不等式:|2x-3|<1得:
P={x|1<x<2},
q:解不等式:x(x-3)<0得:
Q={x|0<x<3}
∵P?Q
p是q的充分不必要条件
故选A.
点评:本题考查的知识点是充要条件的定义,当我们易求出命题表示的点集或数集的范时,可用先求出命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询