急求高手帮忙解答!不胜感激!!!
已知O是锐角三角形ABC的外接圆的圆心,角A,B,C的对边分别为a,b,c,且A=∏/4,若cosB/sinC*向量AB+cosC/sinB*向量AC=2m*向量AO,则...
已知O是锐角三角形ABC的外接圆的圆心,角A,B,C的对边分别为a,b,c, 且A=∏/4,
若cosB/sinC*向量AB+cosC/sinB*向量AC=2m*向量AO,则m=? 展开
若cosB/sinC*向量AB+cosC/sinB*向量AC=2m*向量AO,则m=? 展开
2个回答
展开全部
解:取AB中点D,则有 AO = AD + DO ,
代入cosB /sinC AB +cosC/ sinB AC =2m AO 得:
cosB/ sinC AB +cosC/ sinB AC =2m( AD + DO ),
由 OD ⊥ AB ,得 DO • AB =0,
∴两边同乘 AB ,化简得:
cosB /sinC AB • AB +cosC/ sinB AC • AB =2m( AD + DO )• AB =m AB • AB ,
即cosB /sinC c2+cosC/ sinB bc•cosA=mc2,
由正弦定理a/ sinA =b/ sinB =c/ sinC 化简得:
cosB/ sinC* sin^2C+cosC /sinB* sinBsinCcosA=msin^2C,
由sinC≠0,两边同时除以sinC得:cosB+cosAcosC=msinC,
∴m=[cosB+cosAcosC]/ sinC =[-cos(A+C)+cosAcosC]/ sinC=[-cosAcosC+sinAsinC+cosAcosC ]/sinC =sinA,
又∠A=Pai/4,
则m=sinPai/4=根号2/2.
代入cosB /sinC AB +cosC/ sinB AC =2m AO 得:
cosB/ sinC AB +cosC/ sinB AC =2m( AD + DO ),
由 OD ⊥ AB ,得 DO • AB =0,
∴两边同乘 AB ,化简得:
cosB /sinC AB • AB +cosC/ sinB AC • AB =2m( AD + DO )• AB =m AB • AB ,
即cosB /sinC c2+cosC/ sinB bc•cosA=mc2,
由正弦定理a/ sinA =b/ sinB =c/ sinC 化简得:
cosB/ sinC* sin^2C+cosC /sinB* sinBsinCcosA=msin^2C,
由sinC≠0,两边同时除以sinC得:cosB+cosAcosC=msinC,
∴m=[cosB+cosAcosC]/ sinC =[-cos(A+C)+cosAcosC]/ sinC=[-cosAcosC+sinAsinC+cosAcosC ]/sinC =sinA,
又∠A=Pai/4,
则m=sinPai/4=根号2/2.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询