数学问题 已知函数f(x)=2sinxcos(x+x/6)-cos2x+m,求函数f(x)的最小正周期?
1个回答
2013-09-04
展开全部
应该是f(x)=2sinxcos(x+π/6)-cos2x+m 吧!
f(x)=2sinxcos(x+6分之拍)-cos2x+m =sin(2x+π/6)+sin(-π/6)-cos2x+m =sin(2x+π/6)-sin(π/2-2x)-1/2+m =sin(2x-π/6)+m-1/2∴T=2π/2=π x=-π/6时 函数值最小 令-1+m-12=-3得m=10
f(x)=2sinxcos(x+6分之拍)-cos2x+m =sin(2x+π/6)+sin(-π/6)-cos2x+m =sin(2x+π/6)-sin(π/2-2x)-1/2+m =sin(2x-π/6)+m-1/2∴T=2π/2=π x=-π/6时 函数值最小 令-1+m-12=-3得m=10
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询