为什么是(1+x^2)/(1-x^2)曲线y=ln(1-x2)上相应于0≤x≤ 1 2 的一段弧的长度
1个回答
2017-10-14
展开全部
求曲线的弧长公式:s=∫√(1+y'^2)dx|(a,b).
y=x^2 的 y'^2=4x^2
所以s=∫√(1+4x^2)dx|(0,1).
=1/2∫√(1+(2x)^2)d2x|(0,1)
=1/2∫√(1+t^2)dt|(0,1/2)
=1/2(t/2√(t^2+1)+1/2ln(t+√(t^2+1))+C)|(0,0.5)
=1/2(0.5/2√(0.5^2+1)+1/2ln(0.5+√(0.5^2+1))+C)-1/2(0/2√(0^2+1)+1/2ln(0+√(0^2+1))+C)
≈0.26
y=x^2 的 y'^2=4x^2
所以s=∫√(1+4x^2)dx|(0,1).
=1/2∫√(1+(2x)^2)d2x|(0,1)
=1/2∫√(1+t^2)dt|(0,1/2)
=1/2(t/2√(t^2+1)+1/2ln(t+√(t^2+1))+C)|(0,0.5)
=1/2(0.5/2√(0.5^2+1)+1/2ln(0.5+√(0.5^2+1))+C)-1/2(0/2√(0^2+1)+1/2ln(0+√(0^2+1))+C)
≈0.26
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询