如图,已知,在三角形ABC中,AB=AC,BD=BC,AD=DE=BE.求角A的度数

<�1�5�0�1></�1�5�0�1><�... <�1�5�0�1></�1�5�0�1> <�1�5�0�1></�1�5�0�1> 展开
匿名用户
2013-09-05
展开全部
∵AB=AC,AD=DE,ED=EB,BD=BC
∴∠ABC=∠C,∠A=∠AED,∠EBD=∠EDB,∠BDC=∠C(等边对等角)
设∠A=2x°,则∠AED=2x°
∵在△AED中,∠AED是外角
∴∠AED=∠EBD+∠EDB(三角形的一个外角等于和它不相邻的两个内角的和)
∴∠EBD=∠EDB=x°
∵在△ABD中,∠BDC是外角
∴∠BDC=∠EBD+∠A(三角形的一个外角等于和它不相邻的两个内角的和)
∴∠BDC=3x°
∴∠C=3x°
∴∠ABC=3x°
∵在△ABC中,∠A+∠C+∠ABC=180°
∴2x°+3x°+3x°=180°(三角形三个内角的和等于180°)
解得x=22.5°
∴∠A =2x°=45°
有疑问欢迎追问,满意望好和原创5快速采纳,多谢了~
扁扁小皮蛋
2014-11-01
知道答主
回答量:30
采纳率:0%
帮助的人:12.8万
展开全部
∵AB=AC,AD=DE,ED=EB,BD=BC
∴∠ABC=∠C,∠A=∠AED,∠EBD=∠EDB,∠BDC=∠C(等边对等角)
设∠A=2x°,则∠AED=2x°
∵在△AED中,∠AED是外角
∴∠AED=∠EBD+∠EDB(三角形的一个外角等于和它不相邻的两个内角的和)
∴∠EBD=∠EDB=x°
∵在△ABD中,∠BDC是外角
∴∠BDC=∠EBD+∠A(三角形的一个外角等于和它不相邻的两个内角的和)
∴∠BDC=3x°
∴∠C=3x°
∴∠ABC=3x°
∵在△ABC中,∠A+∠C+∠ABC=180°
∴2x°+3x°+3x°=180°(三角形三个内角的和等于180°)
解得x=22.5°
∴∠A =2x°=45°
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式