如图一,已知,在三角形ABC中,角BAC=90,AB=AC,直线m经过点A,BD垂直于直线m,CE垂直于
展开全部
这个题目可以直接转化为直角坐标系运算
A为原点,AC为x轴,AB为y轴,假设直线m方程为y=-(1/k)x,AB=AC=a
则直线BD方程为 y=kx+a
直线CE方程为 y=kx-ak
由上面可以求出 坐标D(-a/k ,0);坐标E(0,-ak)
所以DE^2=a^2(k^2 +1/k^2)
BD^2=a^2(1+1/k^2)
CE^2=a^2(1+k^2)
注意 k<0
DE=-a/k√(k^4+1)
BD+ CE=-a/k√(k^4+1-2k^3)
好像不成立 DE=BD+ CE
大概思路是这样(可能算错了)
A为原点,AC为x轴,AB为y轴,假设直线m方程为y=-(1/k)x,AB=AC=a
则直线BD方程为 y=kx+a
直线CE方程为 y=kx-ak
由上面可以求出 坐标D(-a/k ,0);坐标E(0,-ak)
所以DE^2=a^2(k^2 +1/k^2)
BD^2=a^2(1+1/k^2)
CE^2=a^2(1+k^2)
注意 k<0
DE=-a/k√(k^4+1)
BD+ CE=-a/k√(k^4+1-2k^3)
好像不成立 DE=BD+ CE
大概思路是这样(可能算错了)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询