高数微积分求体积

LetRbetheregion{(x,y):0<=x<=1,3^x-x-1<=y<=x}.将R沿着y=x旋转,求旋转后提的体积。... Let R be the region {(x,y): 0<=x<=1, 3^x-x-1<=y<=x}. 将R沿着y=x旋转,求旋转后提的体积。 展开
匿名用户
2013-09-06
展开全部

tmduser的回答已经很出色了(还是选tmduser的回答最优吧,因为我自己也学到很多知识),但在积分公式中,错误了一项:dS=d((3^x - 1)/√2) = (log3  ·  3^x)/√2)dx   虽然tmduser把这一项误当作√2

但是巧合的是,最后的结果居然是一样的,世界真的是很奇妙啊:

 

tmduser的回答:       ∫π(|3^x-x-1-x|/√2)^2 *√2 dx     (x从0积到1)  

 严格来说,应该是: ∫π(|3^x-x-1-x|/√2)^2   d((3^x - 1)/√2)     (x从0积到1) 

回复tmduser的评论:  可以认为是由无数个图中薄片HP旋转得到的,每个薄片旋转一周后的微元体积为 2πr*HP/2*dx=πr^2*√2dx          ——→ 你这个1/2 系数是哪来的?

               如果你的切片是 竖直HP  旋转中心取的是:竖直切片HP的中心,那么2πr就不严格了

              不过可以这样理解:

              唉,没有图片不好说啊,不管怎么样,结果确实是一样的,公式也没错,世界真奇妙!

 

我图片中是这样切片的,取切片是 斜的CP方向薄片,所以微元体积dV=πr²dS

 而不是dV=πr²dx

由此看来似乎分歧的主要地方在于:dS是否等于√2dx  其实不然,应该是切片的微元取法

再次谢谢tmduser的讨论,我很愿意同这样的人做朋友的@! 

直接看图吧:

高人仰北谋
2013-09-04 · TA获得超过3402个赞
知道大有可为答主
回答量:2259
采纳率:86%
帮助的人:738万
展开全部
关注一下...
曲线y=3^x-x-1上的任意一点(x,y)到直线y=x的距离为:|3^x-x-1-x|/√2,
直线y=x在[0,1]区间的长度为√2,也就是说是水平距离的√2倍,
因此旋转体的体积为:
∫π(|3^x-x-1-x|/√2)^2 *√2 dx (x从0积到1)
=π/√2 ∫ (4x^2+4x+1 + 9^x-2*3^x-4x*3^x) dx (x从0积到1)
=π/√2 * [ (4x^3)/3+2x^2+x + 9^x/ln9-2*3^x/ln(3) -4x*3^x/ln3 + 4*3^x/(ln3)^2] (x从0积到1)
=π/√2 *(13/3 + 8/(ln3)^2 + 8/ln9-16/ln3)
=π/√2 *(13/3 + 8/(ln3)^2-12/ln3)
≈ 0.08607244
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
帮你学习高中数学
2013-09-04 · TA获得超过3020个赞
知道大有可为答主
回答量:2080
采纳率:50%
帮助的人:1897万
展开全部

这个积分是可积的,不过超级麻烦,你自己来吧。。。。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式