数学学习的书籍

我想自己学习数学,只是因为对数学感兴趣,请大家帮我介绍历史上的数学家著的数学书,比如欧几里得的《几何原本》,请问还有什么著作,反正让我学到数学的各种成果,近现代的新著作也... 我想自己学习数学,只是因为对数学感兴趣,请大家帮我介绍历史上的数学家著的数学书,比如欧几里得的 《几何原本》,请问还有什么著作,反正让我学到数学的各种成果,近现代的新著作也要。 展开
 我来答
匿名用户
2013-09-05
展开全部
、《几何原本》(Elements of Euclid)

欧几里德(Euclid,前300-前275?)古希腊数学家。

本书的印刷量仅次于《圣经》,是数学史上第一本成系统的著作,也是第一本译成中文的西文名著。原名《欧几里德几何学》,明朝徐光启译时改为《几何原本》。全书13卷,从5条公设和5条公理出发,构造了几何的一种演绎体系,这种不假于实体世界,仅由一组公理实施逻辑推理而证明出定理的方法,是人类思想的一大进步。此书从写作的时代一直流传至今,对人类活动起着持续的重大影响,直到19世纪非欧几里德几何出现以前,一直是几何推理、定理和方法的主要来源。

2、《算术研究》(Disquisitiones Arithmetical,1798)

高斯(C.F.Gauss,1774-1855),德国数学家。

“数学之王”的称号可以说是对高斯极其恰当的赞辞。他与阿基米德、牛顿并列为历史上最伟大的数学家。他的名言“数学,科学的皇后;算术,数学的皇后”,贴切地表达了他对于数学在科学中的关键作用的观点。他24岁时发表了这本书,这是数学史上最出色的成果之一,系统而广泛地阐述了数论里有影响的概念和方法。由此推倒了18世界数学的理论和方法,以革新的数论开辟了通往19世纪中叶分析学的严格化道路。高斯立论极端谨慎,有3个原则:“少些;但要成熟 ”:“不留下进一步要做的事情”。

3、《几何基础》(The Fuadations of Geometry,1854)

黎曼(B.Riemann,1826-1866),德国数学家。

黎曼是19世纪最有创造力的数学家之一。虽然他没有活到40岁,著作也不多,但几乎每篇文章都开创了一个新的领域。本篇是黎曼在格丁根大学任大学讲师时的就职演讲,是数学史上最著名的演讲之一,题为“关于构成几何基础的假设”。在演讲中黎曼独立提出了非欧几里德几何,即“黎曼几何”,又称椭圆几何。他的这一关于空间几何的独具胆识的思想,对近代理论物理学发生深远的影响,成为爱因斯坦相对论的几何基础。

4、《集合一般理论的基础》(Foundations of a General Theory of Aggregates,1883)

康托尔(G.Cantor,1845-1918),德国数学家。

康托尔创立的集合论,是19世纪最伟大的成就之一。本书是康托尔研究集合论的专著。他通过建立处理数学中无限的基本技巧而极大地推动了分析和逻辑的发展,凭借古代与中世纪哲学著作中关于无限的思想而导出了关于数的本质的新的思想模式。

5、《几何基础》(The Fuadations of Geometry,1899)

希耳伯特(D.Hilbert,1862-1943),德国数学家。

希耳伯特是整个一代国际数学界的巨人。由高高斯、狄利克雷和黎曼于19世纪开创的生气勃勃的数学传统在20世纪的头30年中主要由于希耳伯特而更为显赫著名。在本书中,希耳伯特用几何学的例子来阐述公理体系的集合理论的处理方法,它标志着几何学公理化处理的转折点。希耳伯特的名言:“我必须知道,我必将知道”,总结了他献身数学并以毕生业务使之发展到新水平的激情。

6、《测度的一般理论和概率论》(General Theoey of Measure and Probability Theory,1929)

柯尔莫哥洛夫(A.N.Kolmogorov,1903-1993),苏联数学家。

柯尔莫哥洛夫是20世纪最有影响的苏联数学家。他对许多数学分支贡献了创造性的一般理论。此篇论文是研究概率的名作,在随后的50年中被人们作为概率论的完全公理而接受。在1937年又出版《概率论的解析方法》一书,阐述了无后效的随机过程理论的原理,标志着概论论发展的一个新时期。

7、《论<数学原理>及其相关系统形式不可判定命题》(On Formally Undecidble Propositions of Principia Mathematica and Related Systems,1931)

哥德尔(K.Godel,1906-1978),美籍奥地利数学家。

哥德尔在本篇中给出了著名的哥德尔证明,其内容是,要任何一个严格的数学系统中,必定有用本系统内的公理无法证明其成立或不成立的命题,因此,不能说算术的基本公理不会出现矛盾。这个证明成了20世纪数学的标志,至今仍有影响和争论。它结束了近一个世纪来数学家们为建立能为全部数学提供严密基础公理的企图。

8、《数学原理》(Elements Mathematique I-XXXIX,1939-)

本书的署名是布尔巴基(Bourbiaki),他不是一个人,而是对现代数学影响巨大的数学家集团。在本世纪30年代由法国的一群年轻数学家结合而成他们把人类长期积累的数学知识按照数学结构整理而成为一个井井有条、博大精深的体系,已出版的近40卷的《数学原理》成为一部经典著作,成为许多研究工作的出发点和参考指南,并成为蓬勃发展的数学科学的主流,这套巨著究竟何时算完,谁也说不清。但是这个体系连同布尔巴基学派对数学的其他贡献,在数学史上是独一无二的。
匿名用户
2013-09-05
展开全部
《10000个科学难题》序
前言
奥特(Vaught)猜想与拓扑奥特猜想
超紧基数典型内模型问题
递归可枚举度中的格嵌入问题和双量词理论可判定性问题
高层有限波雷尔(Borel)等价关系中的两个问题
极小塔问题
r=rω?及s=sω?
连续统势确定问题
奇异基数问题
萨克斯(Sacks)关于波斯特(Post)问题的度不变解问题和马丁(Martin)猜想
图灵(Turing)等价问题
图灵(Turing)度的自同构问题
是否存在一个稳定的一阶完全理论,它有大于一的有穷多个可数模型
Cherlin-zilber猜想
带指数函数的实数理论的可判定性问题
Shelalh唯一性猜想
微分封闭域上的平凡强极小集
3-Calabi-Yau代数的分类
阿廷(Artin)群的Grobner-Shirshov基
布如意(Broue)交换亏群猜想
布朗(Brown)问题
凯莱(Cayley)图和相关的问题
福克斯(Foulkes)猜想
戈伦斯坦(Gorenstein)对称猜想
卡普兰斯基(Kaplansky)第六猜想
中山(Nakayama)猜想和广义中山(Nakayama)猜想
拉姆拉斯(Ramras)问题
Smashing子范畴上的公开问题
巴斯-奎伦(Bass-Quillen)猜想
非半单Brauer代数的表示理论
非交换曲面的分类
关于码交换等价于前缀码的猜测
关于半群上一类重要同余的一个系列推广模式
关于有限码具有有限完备化的判定问题
关于正则半群的两个嵌入问题
广义倾斜模中的两个猜想
考克斯特群的胞腔
满足正规子群极小条件的可解群的Fitting子群是否是幂零的?
模代数smash积的半素性
球极函数的提升Pieri型公式
稳定等价猜想
一些代数的Grobner-Shirshov基
由导出范畴建立量子群和典范基
有限维数猜想
ABC猜测
巴斯(Bass)猜想和索尔(Soule)猜想
Lichtenbaum猜想
里德一所罗门(Reed-Solomon)码的译码问题
沙努尔(Schanuel)猜想
哥德巴赫(Goldbach)猜想
关于不同模覆盖系的厄尔多斯(Erdos)问题
关于倒数和发散序列的厄尔多斯图兰(Erdos-Turan)猜想
关于奇数阶阿贝尔(Abel)群的Snevily猜想
关于有限域上代数曲线点数的Drinfeld-Vladt界
朗兰兹(Langlands)纲领
类数1实二次域的高斯猜想
黎曼(Riemann)zeta函数在奇正整数点处值的超越性
黎曼(Riemann)猜想
欧拉常数的超越性
椭圆曲线的BSD猜想
希尔伯特第九问题:高斯二次互反律如何推广
希尔伯特第十二问题:构作数域的最大阿贝尔扩域
岩泽(Iwasawa)理论的主猜想
……
编后记
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2013-09-05
展开全部
10000个科学难题·数学卷
作者:“1000个数学难题”数学编委会 编
出版:科学 出版日期:2009年05月
《10000个科学难题·数学卷》是教育部、科学技术部、中国科学院和国家自然科学基金委员会联合组织开展的“10000个科学难题”征集活动的重要成果,书中的题目均由国内国际知名的数学专家撰写。书中收集了有关数学很多分支学科及数学的应用等方面的大量问题,以及当今一些重要的数学问题。该书可供高等院校和科研单位数学领域的研究生、科研人员阅读参考,也可供对数学感兴趣的其他读者阅读。有兴趣的读者可以在此基础上就其中的某一问题进行深入探索和研究,一些研究生也可以在导师的指导下选择其中的某一问题作为自己的研究课题 http://www.xinhuabookstore.com/product/1201195/
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式