excel回归分析的结果各项都代表着什么?
Multiple R:相关系数R,值在-1与1之间,越接近-1,代表越高的负相关,反之,代表越高的正相关关系。
R Square:测定系数,也叫拟合优度。是相关系数R的平方,同时也等于回归分析SS/(回归分析SS+残差SS),这个值在0~1之间,越大代表回归模型与实际数据的拟合程度越高。
Adjusted R Square:校正的测定系数,对两个具有不同个数的自变量的回归方程进行比较时,考虑方程所包含的自变量个数的影响。
标准误差:等于表2中残差SS / 残差df 的平方根。与测定系数一样都能描述回归模型与实际数据的拟合程度,它代表的是实际值与回归线的距离。
观测值:有多少组自变量的意思。
excel回归分析的使用方法:
1、首先在excel表格中输入需要进行回归分析的数据。
2、点击“数据”选项卡中“数据分析”工具中的“回归”,点击确定。
3、打开回归窗口后根据表格的X/Y值区域选中对应的区域范围。
4、然后设置好输出区域的范围,点击确定。
5、即可将excel表格中的数据形成回归分析数据显示在对应的单元格区域中。
A、Multiple R:x和y的相关系数r,一般在-1~1之间,绝对值越靠近1则相关性越强,越靠近0则相关性越弱;
B、R square:x和y的相关系数r的平方,表达自变量x解释因变量y变差的程度,以测定量y的拟合效果;
C、Adjusted R Square:调整后的R square,说明自变量能说明因变量百分比,和B的区别在于,通常一元回归的时候看B项多,而多元回归时候看C项多;
D、标准误差:用来衡量拟合程度的大小,也用于计算与回归相关的其它统计量,此值越小,说明拟合程度越好;
E、观察值:用于训练回归方程的样本数据有多少个;
具体如下:
方差分析,主要作用是通过F检验来判定回归模型的回归效果
A、主要关注回归分析这一行的Significance F(F显著性统计量)的P值,以统计常用的0.05显著水平为例,这里的2E-12明显小于P=0.05,则F检验通过,整体回归方程显著有效;
B、具体各参数含义如下:
<img src="https://pic2.zhimg.com/50/v2-8f52211225e0cfce5cf263ee3fd319e9_hd.jpg" data-rawwidth="2110" data-rawheight="294" class="origin_image zh-lightbox-thumb" width="2110" data-original="https://pic2.zhimg.com/v2-8f52211225e0cfce5cf263ee3fd319e9_r.jpg">
R Square:测定系数,也叫拟合优度。是相关系数R的平方,同时也等于回归分析SS/(回归分析SS+残差SS),这个值在0~1之间,越大代表回归模型与实际数据的拟合程度越高。
Adjusted R Square:校正的测定系数,对两个具有不同个数的自变量的回归方程进行比较时,考虑方程所包含的自变量个数的影响。
标准误差:等于表2中残差SS / 残差df 的平方根。与测定系数一样都能描述回归模型与实际数据的拟合程度,它代表的是实际值与回归线的距离。
观测值:有多少组自变量的意思。
excel回归分析的使用方法:
1、首先在excel表格中输入需要进行回归分析的数据。
2、点击“数据”选项卡中“数据分析”工具中的“回归”,点击确定。
3、打开回归窗口后根据表格的X/Y值区域选中对应的区域范围。
4、然后设置好输出区域的范围,点击确定。
5、即可将excel表格中的数据形成回归分析数据显示在对应的单元格区域中。