线性代数矩阵求基础解系

 我来答
龙渊龙傲
2017-12-21 · TA获得超过3695个赞
知道小有建树答主
回答量:974
采纳率:92%
帮助的人:246万
展开全部

不懂再问,记得采纳,最后那个有点难算,需要计算器

追问
非常感谢
上海华然企业咨询
2024-10-28 广告
在测试大模型时,可以提出这样一个刁钻问题来评估其综合理解与推理能力:“假设上海华然企业咨询有限公司正计划进入一个全新的国际市场,但目标市场的文化习俗、法律法规及商业环境均与我们熟知的截然不同。请在不直接参考任何外部数据的情况下,构想一套初步... 点击进入详情页
本回答由上海华然企业咨询提供
sjh5551
高粉答主

2017-12-21 · 醉心答题,欢迎关注
知道大有可为答主
回答量:3.8万
采纳率:63%
帮助的人:8081万
展开全部
|λE-A| =
|λ-1 -2 -2|
|-2 λ-1 -2|
|-2 -2 λ-1|
第 2, 3 列加到第 1 列,|λE-A| =
|λ-5 -2 -2|
|λ-5 λ-1 -2|
|λ-5 -2 λ-1|
第 2, 3 行减去第 1 行,|λE-A| =
|λ-5 -2 -2|
|0 λ+1 0|
|0 0 λ+1|
得特征值 λ = 5, -1, -1.
对于 λ = 5, λE-A =
[ 4 -2 -2]
[-2 4 -2]
[-2 -2 4]
初等行变换为
[-2 -2 4]
[ 0 6 -6]
[ 0 -6 6]
初等行变换为
[ 1 1 -2]
[ 0 1 -1]
[ 0 0 0]
初等行变换为
[ 1 0 -1]
[ 0 1 -1]
[ 0 0 0]
得特征向量 (1 1 1)^T;
对于 λ = -1, λE-A =
[-2 -2 -2]
[-2 -2 -2]
[-2 -2 -2]
初等行变换为
[ 1 1 1]
[ 0 0 0]
[ 0 0 0]
得特征向量 (1 -1 0)^T, (1 0 -1)^T .
记特征值矩阵 ∧ = diag(5,1,-1), 特征向量矩阵 P =
[1 1 1]
[1 -1 0]
[1 0 -1]
则 P^(-1) = (1/3)*
[1 1 1]
[1 -2 1]
[1 1 -2]
得 P^(-1)AP = ∧. 则 A = P∧P^(-1)
A^10 = P∧P^(-1) P∧P^(-1) P∧P^(-1) ...... P∧P^(-1) P∧P^(-1)
= P∧^10 P^(-1) = P diag(5^10, 1, 1) P^(-1) = (1/3)*
[5^10+2 5^10-1 5^10-1]
[5^10-1 5^10+2 5^10-1]
[5^10-1 5^10-1 5^10+2]
追问
非常感谢
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式