一道数学题目 急求高手回答 在线等

已知定义在R上的偶函数f(x)在【0,+∞)上是增函数,且f(2)=1,若f(x+a)≤1对于x∈【-1,1】恒成立,求实数a的取值范围... 已知定义在R上的偶函数f(x)在【0,+∞)上是增函数,且f(2)=1,若f(x+a)≤1对于x∈【-1,1】恒成立,求实数a的取值范围 展开
百度网友dce3067
2013-09-04
知道答主
回答量:27
采纳率:0%
帮助的人:28.7万
展开全部

看照片,图在试卷中就不要画啦,在草稿上画就行了。看下照片就知道了。记得采纳啊

追问
原谅我电脑看不到你的图,手机下载格式不支持
追答

汗。。。。。。你等下。其实你可以用360解压的

yoraika
2013-09-04 · 超过18用户采纳过TA的回答
知道答主
回答量:39
采纳率:0%
帮助的人:38.1万
展开全部
x∈【-1,1】则 x+a∈【a-1,a+1】
因为该函数为函数,所以f(2)=f(-2)=1

即【a-1,a+1】区间不大于【-2,2】
列式a-1>=-2 且a+1<=2,解得-1<=a<=1

已经好久不做高中数学题了,所以不知道对不对,希望楼主仔细检查再酌情采纳!若是不幸解答错误,鄙人先在此谢罪了!
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
Apink_yy
2013-09-04 · 超过10用户采纳过TA的回答
知道答主
回答量:23
采纳率:0%
帮助的人:18.2万
展开全部

a∈【-1,1】

完全代数方法解决,简单明了直接。

要点是利用偶函数的条件把f(x)内加上绝对值,然后利用恒成立条件转化为关于a的范围的不等式。

追问
那个每个......后面的是什么意思啊
追答
对任意x属于-1到1恒成立
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2013-09-05
展开全部
偶函数f(x)在【0,+∞)上是增函数,则在【-∞,0)上是减函数,f(-2)=f(2)=1,由f(x+a)≤1可得 -2<=x+a<=2,-2-x<=a<=2-x对于x∈【-1,1】恒成立 ,所以-1<=a<=1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
汪庭因01c
2013-09-04
知道答主
回答量:74
采纳率:0%
帮助的人:14.5万
展开全部
正确答案a小于1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式