薄圆盘绕直径的转动惯量怎么求?
用平行轴定理求解:圆盘绕垂直圆盘面,经过圆盘中心的轴旋转时:J=mr^2/2
则:薄圆盘绕一根在圆外的,与该圆盘直径平行的固定轴旋转,且圆盘中心到轴的距离为d时。
其转动惯量为:J'=J+md^2=m(r^2/2+d^2)
转动惯量(Moment of Inertia)是刚体绕轴转动时惯性(回转物体保持其匀速圆周运动或静止的特性)的量度,通常以/或J表示。在经典力学中,转动惯量(又称质量惯性矩,简称惯距)通常以/或J表示,SI 单位为 kg·m²。对于一个质点,/= mr²,其中 m 是其质量,r 是质点和转轴的垂直距离。转动惯量在旋转动力学中的角色相当于线性动力学中的质量,可形式地理解为一个物体对于旋转运动的惯性,用于建立角动量、角速度、力矩和角加速度等数个量之间的关系。
例题:已知:一个直径是80的轴,长度为500,材料是钢材。计算一下,当在0.1秒内使它达到500转/分的速度时所需要的力矩?
分析:知道轴的直径和长度,以及材料,我们可以查到钢材的密度,进而计算出这个轴的质量m,由公式ρ=m/v可以推出m=ρv=ρπr^2L.根据在0.1秒达到500转/分的角速度,我们可以算出轴的角加速度β=△ω/△t=500转/分/0.1s
电机轴我们可以认为是圆柱体过轴线,所以J=m(r^2)/2。
所以M=Jβ
=m(r^2)/2△ω/△t
=ρπr^2h(r^2)/2△ω/△t
=7.8×10^3 ×3.14× 0.04^2×0.5×0.04^2÷2 ×500×2π÷60÷0.1
=8.203145
单位M=kgm^2/s^2=N*m
2024-10-15 广告