齐次线性方程组AX=0仅有零解得充分必要条件是什么?

 我来答
帐号已注销
2019-05-25 · TA获得超过33.9万个赞
知道小有建树答主
回答量:403
采纳率:0%
帮助的人:15.1万
展开全部

只有零解时,R(A)=n

特别当A是方阵时 |A|≠0。

有非零解时,R(A)<n

特别当A是方阵时 |A|=0。

如果m<n(行数小于列数,即未知数的数量大于所给方程组数),则齐次线性方程组有非零解,否则为全零解。

对齐次线性方程组的系数矩阵施行初等行变换化为阶梯型矩阵后,不全为零的行数r(即矩阵的秩)小于等于m(矩阵的行数),若m<n,则一定n>r,则其对应的阶梯型n-r个自由变元,这个n-r个自由变元可取任意取值,从而原方程组有非零解(无穷多个解)。

扩展资料:

齐次线性方程组的两个解的和仍是齐次线性方程组的一组解。齐次线性方程组的解的k倍仍然是齐次线性方程组的解。

齐次线性方程组的系数矩阵秩r(A)=n,方程组有唯一零解。齐次线性方程组的系数矩阵秩r(A)<n,方程组有无数多解。

非齐次线性方程组有解时,解唯一的充要条件是对应的齐次线性方程组只有零解;解无穷多的充要条件是对应齐次线性方程组有非零解。

但反之当非齐次线性方程组的导出组仅有零解和有非零解时,不一定原方程组有唯一解或无穷解,事实上,此时方程组不一定有 ,即不一定有解。

参考资料来源:百度百科——齐次线性方程组

Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
sky不用太多sky
高粉答主

推荐于2019-08-05 · 醉心答题,欢迎关注
知道大有可为答主
回答量:1082
采纳率:97%
帮助的人:47万
展开全部

只有零解时,R(A)=n 特别得 当A是方阵时 |A|≠0。 有非零解时,R(A)<n 特别得 当A是方阵时 |A|=0。

齐次线性方程组解的判定定理编辑

定理1

齐次线性方程组  有非零解的充要条件是r(A)<n。即系数矩阵A的秩小于未知量的个数。

推论

齐次线性方程组  仅有零解的充要条件是r(A)=n。

齐次线性方程组解的结构编辑

齐次线性方程组解的性质

定理2 若x是齐次线性方程组  的一个解,则kx也是它的解,其中k是任意常数。

定理3 若x1,x2是齐次线性方程组  的两个解,则x1+x2也是它的解。

定理4 对齐次线性方程组  ,若r(A)=r<n,则  存在基础解系,且基础解系所含向量的个数为n-r,即其解空间的维数为n-r。[4] 

求解步骤

1、对系数矩阵A进行初等行变换,将其化为行阶梯形矩阵;

2、若r(A)=r=n(未知量的个数),则原方程组仅有零解,即x=0,求解结束;

若r(A)=r<n(未知量的个数),则原方程组有非零解,进行以下步骤:

3、继续将系数矩阵A化为行最简形矩阵,并写出同解方程组;

4、选取合适的自由未知量,并取相应的基本向量组,代入同解方程组,得到原方程组的基础解系,进而写出通解.

性质

1.齐次线性方程组的两个解的和仍是齐次线性方程组的一组解。

2.齐次线性方程组的解的k倍仍然是齐次线性方程组的解。

3.齐次线性方程组的系数矩阵秩r(A)=n,方程组有唯一零解。

齐次线性方程组的系数矩阵秩r(A)<n,方程组有无数多解。

4. n元齐次线性方程组有非零解的充要条件是其系数行列式为零。等价地,方程组有唯一的零解的充要条件是系数矩阵不为零。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
秒懂百科精选
高粉答主

2019-09-01 · 每个回答都超有意思的
知道答主
回答量:60.8万
采纳率:14%
帮助的人:3.1亿
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式