数列求和n三次方

∑n�0�6... ∑n�0�6 展开
闲闲谈娱乐
高能答主

2021-09-20 · 用力答题,不用力生活
知道大有可为答主
回答量:9505
采纳率:100%
帮助的人:154万
展开全部

如下:

1^3+2^3+3^3+……+n^3=[n(n+1)/2]^2

证明:

利用立方差公式:

(n+1)^4-n^4=[(n+1)^2+n^2][(n+1)^2-n^2]

=(2n^2+2n+1)(2n+1)

=4n^3+6n^2+4n+1

2^4-1^4=4*1^3+6*1^2+4*1+1

3^4-2^4=4*2^3+6*2^2+4*2+1

4^4-3^4=4*3^3+6*3^2+4*3+1

......

(n+1)^4-n^4=4*n^3+6*n^2+4*n+1

各式相加有:

(n+1)^4-1=4*(1^3+2^3+3^3...+n^3)+6*(1^2+2^2+...+n^2)+4*(1+2+3+...+n)+n

4*(1^3+2^3+3^3+...+n^3)=(n+1)^4-1+6*[n(n+1)(2n+1)/6]+4*[(1+n)n/2]+n

=[n(n+1)]^2

1^3+2^3+...+n^3=[n(n+1)/2]^2

数列:


数列0,1,2,3,4,5,6,7,8,9,10,11,12,……n,称为自然数列。


自然数列的通项公式an=n。


自然数列的前n项和Sn=n(n+1)/2。 Sn=na1+n(n-1)/2


自然数列本质上是一个等差数列,首项a1=1,公差d=1。

匿名用户
2013-09-05
展开全部
先推导1^2+2^2+3^2+……+n^2=n(n+1)(2n+1)/6

由n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)]
=n^2+(n-1)^2+n^2-n
=2*n^2+(n-1)^2-n

2^3-1^3=2*2^2+1^2-2
3^3-2^3=2*3^2+2^2-3
4^3-3^3=2*4^2+3^2-4
......
n^3-(n-1)^3=2*n^2+(n-1)^2-n

各等式全相加
n^3-1^3=2*(2^2+3^2+...+n^2)+[1^2+2^2+...+(n-1)^2]-(2+3+4+...+n)
=2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+...+(n-1)^2+n^2]-n^2-(2+3+4+...+n)
=3*(1^2+2^2+3^2+...+n^2)-2-n^2-(1+2+3+...+n)+1
=3(1^2+2^2+...+n^2)-1-n^2-n(n+1)/2
整理
3(1^2+2^2+...+n^2)=n^3+n^2+n(n+1)/2=(n/2)(2n^2+2n+n+1)
=(n/2)(n+1)(2n+1)

所以1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6

再推导1^3+2^3+3^3+……+n^3=[n(n+1)/2]^2

由(n+1)^4-n^4=[(n+1)^2+n^2][(n+1)^2-n^2]
=(2n^2+2n+1)(2n+1)
=4n^3+6n^2+4n+1

2^4-1^4=4*1^3+6*1^2+4*1+1
3^4-2^4=4*2^3+6*2^2+4*2+1
4^4-3^4=4*3^3+6*3^2+4*3+1
......
(n+1)^4-n^4=4*n^3+6*n^2+4*n+1

各式相加有
(n+1)^4-1=4*(1^3+2^3+3^3...+n^3)+6*(1^2+2^2+...+n^2)+4*(1+2+3+...+n)+n
整理后
4*(1^3+2^3+3^3+...+n^3)=(n+1)^4-1+6*[n(n+1)(2n+1)/6]+4*[(1+n)n/2]+n
=[n(n+1)]^2

进而1^3+2^3+...+n^3=[n(n+1)/2]^2
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2013-09-05
展开全部
1^3+2^3+3^3+……+n^3=[n(n+1)/2]^2
证明:
利用立方差公式:
(n+1)^4-n^4=[(n+1)^2+n^2][(n+1)^2-n^2]
=(2n^2+2n+1)(2n+1)
=4n^3+6n^2+4n+1

2^4-1^4=4*1^3+6*1^2+4*1+1
3^4-2^4=4*2^3+6*2^2+4*2+1
4^4-3^4=4*3^3+6*3^2+4*3+1
......
(n+1)^4-n^4=4*n^3+6*n^2+4*n+1

各式相加有
(n+1)^4-1=4*(1^3+2^3+3^3...+n^3)+6*(1^2+2^2+...+n^2)+4*(1+2+3+...+n)+n

4*(1^3+2^3+3^3+...+n^3)=(n+1)^4-1+6*[n(n+1)(2n+1)/6]+4*[(1+n)n/2]+n
=[n(n+1)]^2

1^3+2^3+...+n^3=[n(n+1)/2]^2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2013-09-05
展开全部
∑n�0�6=n^2*(n+1)^2/4
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式