如何求函数的单调区间?

 我来答
白雪忘冬
高粉答主

2019-05-27 · 在我的情感世界留下一方美好的文字
白雪忘冬
采纳数:1007 获赞数:376631

向TA提问 私信TA
展开全部

利用导数公式进行求导,然后判断导函数和0的大小关系,从而判断增减性,导函数值大于0,说明是增函数,导函数值小于0,说明是减函数,前提是原函数必须是连续且可导的。

一般地,设一连续函数 f(x) 的定义域为D,则

1、如果对于属于定义域D内某个区间上的任意两个自变量的值x1,x2∈D且x1>x2,都有f(x1) >f(x2),即在D上具有单调性且单调增加,那么就说f(x) 在这个区间上是增函数。

2、相反地,如果对于属于定义域D内某个区间上的任意两个自变量的值x1,x2∈D且x1>x2,都有f(x1) <f(x2),即在D上具有单调性且单调减少,那么就说 f(x) 在这个区间上是减函数。

扩展资料

性质

若函数y=f(x)在某个区间是增函数或减函数,则就说函数在这一区间具有(严格的)单调性,这一区间叫做函数的单调区间。此时也说函数是这一区间上的单调函数

注:在单调性中有如下性质。图例:↑(增函数)↓(减函数)

↑+↑=↑ 两个增函数之和仍为增函数

↑-↓=↑ 增函数减去减函数为增函数

↓+↓=↓ 两个减函数之和仍为减函数

↓-↑=↓ 减函数减去增函数为减函数

一般地,设函数f(x)的定义域为I:

如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1<x2时都有f(x1)<f(x2)。那么就说f(x)在这个区间上是增函数。

相反地,如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1<x2时都有f(x1)>f(x2),那么f(x)在这个区间上是减函数。

东师陈老师
高粉答主

推荐于2019-10-14 · 每个回答都超有意思的
知道大有可为答主
回答量:1.5万
采纳率:41%
帮助的人:1356万
展开全部
  1. 利用已知函数的图象:如y=kx+b,k>0时单调递增

    常用的函数有:一次函数,二次函数,反比例函数,指数函数,对数函数,幂函数,对勾函数(y=x+a/x,a>0),立方曲线y=x^3等。

  2. 利用复合函数的单调性

    规律:同增异减。

    如:y=√(1-x),令t=1-x,则y=√t,t=1-x单调递减,y=√t单调递增,故y=√(1-x)在(-∞,1]上单调递减。

  3. 利用导数

    导数大于0时为增函数,导数小于0时为减函数。

    如:y=2x+sinx,y'=2+cosx>0,故y=2x+sinx单调递增。

单调区间是指函数在某一区间内的函数值y,随自变量x增大而增大(或减小)恒成立。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
阳光葵葵yy
2019-01-01 · TA获得超过3.6万个赞
知道小有建树答主
回答量:1.2万
采纳率:26%
帮助的人:814万
展开全部
方法很多,通常先求函数的定义区间,再看是否具有单调性。要是对称函数求对称轴。一种是画图。另一种是求函数一次转化求零点。在定义区间内大于零的递增,小于零的递减。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
云彩荣左珍
2019-09-07 · TA获得超过3.8万个赞
知道大有可为答主
回答量:1.4万
采纳率:27%
帮助的人:863万
展开全部
这个要采用导数来求解。
求导,f'(x)=1+1/x-a/x²=(x²+x-a)/x²
令f'(x)=0,即x²+x-a=0
(1)
△=1+4a
1.若△≥0,即a≥1/4时,方程(1)有解,x=-1/2+1/2*√(1+4a)
此时,f(x)的递减区间为(0,-1/2+1/2*√(1+4a)],递增区间为(-1/2+1/2*√(1+4a),+∞)
2.若△<0,即a≥1/4时,方程(1)无解,f'(x)>0
此时,f(x)在(0,+∞)递增
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
冠片N
高粉答主

2019-10-24 · 繁杂信息太多,你要学会辨别
知道答主
回答量:11.8万
采纳率:1%
帮助的人:6319万
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(6)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式