展开全部
^由于A^2=(B+E)^2=B^2+2B+E=B+2B+E=3A-2E,可改写为3A-A^2=2E,即(3E-A)A=2E,也就是(1/2)(3E-A)A=E,所以A可逆,且其逆矩阵为(1/2)(3E-A)。
要证明A可逆,即证明E+B乘以某个矩阵等于E,为了用上B=B2,因此乘的那个矩阵要含有B,当然也要含有E。
证明:由于(B+E)(B-2E)=B2+B-2B-2E,又B=B2,
故(B+E)(B-2E)=-2E
这样(B+E)
B−2E/−2
=E,于是A可逆
且A−1=
B−2E/−2
=2E−B/2
扩展资料:
每一个线性空间都有一个基。
对一个 n 行 n 列的非零矩阵 A,如果存在一个矩阵 B 使 AB = BA =E(E是单位矩阵),则 A 为非奇异矩阵(或称可逆矩阵),B为A的逆阵。
矩阵非奇异(可逆)当且仅当它的行列式不为零。
矩阵非奇异当且仅当它代表的线性变换是个自同构。
矩阵正定当且仅当它的每个特征值都大于零。
参考资料来源:百度百科-线性代数
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询