2个回答
展开全部
lim(x->0)[e^(x^2)-e^(2-2cosx)]/ x^4 (0/0)
=lim(x->0)[2xe^(x^2)-2sinx.e^(2-2cosx)]/ (4x^3)
=lim(x->0)[e^(x^2)-e^(2-2cosx)]/ (2x^2) ( sinx ~x , x->0 ) (0/0)
=lim(x->0)[2xe^(x^2)-2sinxe^(2-2cosx)]/ (4x)
=lim(x->0)[e^(x^2)-e^(2-2cosx)]/ 2
=0
=lim(x->0)[2xe^(x^2)-2sinx.e^(2-2cosx)]/ (4x^3)
=lim(x->0)[e^(x^2)-e^(2-2cosx)]/ (2x^2) ( sinx ~x , x->0 ) (0/0)
=lim(x->0)[2xe^(x^2)-2sinxe^(2-2cosx)]/ (4x)
=lim(x->0)[e^(x^2)-e^(2-2cosx)]/ 2
=0
追问
我也觉得是0!可是答案是12分之1。
追答
lim(x->0)[e^(x^2)/ x^4] (0/0)
=lim(x->0)[2xe^(x^2)/ (4x^3)]
=lim(x->0)[e^(x^2)/ (2x^2)] (0/0)
=lim(x->0)[2xe^(x^2)/ (4x)]
= 1/2
lim(x->0)e^(2-2cosx)/ x^4 (0/0)
= lim(x->0) sinxe^(2-2cosx)/ (2x^3) (0/0)
= lim(x->0) [cosx +2(sinx)^2] e^(2-2cosx)/(6x^2) (0/0)
=lim(x->0) [-sinx +4(sinx)cosx +2sinx(cosx+2(sinx)^2) ] e^(2-2cosx)/(12x)
=lim(x->0) [-sinx +6(sinx)cosx +4(sinx)^3 ] e^(2-2cosx)/(12x)
=lim(x->0) [-sinx +3sin(2x) +4(sinx)^3 ] e^(2-2cosx)/(12x) (0/0)
=lim(x->0){ [-cosx +6cos(2x) +12(sinx)^2cosx
+ 2sinx([-sinx +3sin(2x) +4(sinx)^3 ]) ].e^(2-2cosx) }/(12)
=(-1+6)/12
=5/12
lim(x->0)[e^(x^2)-e^(2-2cosx)]/ x^4
=1/2 -5/12
=1/12
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询