
1×3+3×5+···+n(n+2)的求和规律 5
2个回答
展开全部
题目有点问题,如果按排列规律看,最后一项应该是(2n-1)(2n+1)
考察一般项第k项:
(2k-1)(2k+1)=4k²-1
1×3+3×5+...+(2n-1)(2n+1)
=4×(1²+2²+...+n²) -n
=4n(n+1)(2n+1)/6 -n
=[2n(n+1)(2n+1)-3n]/3
=n[2(n+1)(2n+1)-3]/3
=n(4n²+6n-1)/3
用到公式:1²+2²+...+n²=n(n+1)(2n+1)/6
考察一般项第k项:
(2k-1)(2k+1)=4k²-1
1×3+3×5+...+(2n-1)(2n+1)
=4×(1²+2²+...+n²) -n
=4n(n+1)(2n+1)/6 -n
=[2n(n+1)(2n+1)-3n]/3
=n[2(n+1)(2n+1)-3]/3
=n(4n²+6n-1)/3
用到公式:1²+2²+...+n²=n(n+1)(2n+1)/6
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询