1个回答
展开全部
由样本的性质知Xi~b(1,p)(i=1,...,n),且X1,X2,。。。Xn相互独立,所以Xi的分布律为 P{Xi=xi}=p^xi (1-p)^(1-xi ) (xi=0,1; i=1,...,n) (1)P{(X1,...,Xn)=(x1,...,xn)}=P{X1=x1}...P{Xn=xn}=p^x1(1-p)^(1-x1)...p^xn(1-p)^(1-xn) =p^∑xi (1-p)^(n-∑xi) (2)∑Xi即n次试验中成功(即Xi=1)的次数,故∑Xi~b(n,p)(二项分布),分布律就不用我帮你写了吧.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |