证明数列收敛的基本方法是什么?
展开全部
证明数列收敛通常是落实到定义上或者证明数列的极限是固定值。
比如数列an=a0+1/n,随着n增大,lim(an)=a0,因此可证明数列{an}是收敛的。数列收敛的定义:如果数列{Xn},如果存在常数a,对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,不等式|Xn-a|<q都成立,就称数列{Xn}收敛于a(极限为a),即数列{Xn}为收敛数列。
具体证明各种数列收敛的方法是高数至少半个学期的课程,不可能在这给一一列出来。可参考微积分II的教材,非常详细。
有界性,定义:设有数列xn , 若存在M>0,使得一切自然数n,恒有|Xn|<M成立,则称数列xn有界。定理1:如果数列{Xn}收敛,那么该数列必定有界。推论:无界数列必定发散;数列有界,不一定收敛;数列发散不一定无界。数列有界是数列收敛的必要条件,但不是充分条件。
保号性,如果数列{Xn}收敛于a,且a>0(或a<0),那么存在正整数N,当n>N时,都有Xn>0(或Xn<0)。
展开全部
证明数列收敛通常是落实到定义上或者证明数列的极限是固定值。
比如数列an=a0+1/n,随着n增大,lim(an)=a0,因此可证明数列{an}是收敛的。
数列收敛的定义:如果数列{Xn},如果存在常数a,对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,不等式|Xn-a|<q都成立,就称数列{Xn}收敛于a(极限为a),即数列{Xn}为收敛数列。
具体证明各种数列收敛的方法是高数至少半个学期的课程,不可能在这给一一列出来。可参考微积分II的教材,非常详细。
有界性,定义:设有数列xn
,
若存在M>0,使得一切自然数n,恒有|Xn|<M成立,则称数列xn有界。定理1:如果数列{Xn}收敛,那么该数列必定有界。推论:无界数列必定发散;数列有界,不一定收敛;数列发散不一定无界。数列有界是数列收敛的必要条件,但不是充分条件。
保号性,如果数列{Xn}收敛于a,且a>0(或a<0),那么存在正整数N,当n>N时,都有Xn>0(或Xn<0)。
比如数列an=a0+1/n,随着n增大,lim(an)=a0,因此可证明数列{an}是收敛的。
数列收敛的定义:如果数列{Xn},如果存在常数a,对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,不等式|Xn-a|<q都成立,就称数列{Xn}收敛于a(极限为a),即数列{Xn}为收敛数列。
具体证明各种数列收敛的方法是高数至少半个学期的课程,不可能在这给一一列出来。可参考微积分II的教材,非常详细。
有界性,定义:设有数列xn
,
若存在M>0,使得一切自然数n,恒有|Xn|<M成立,则称数列xn有界。定理1:如果数列{Xn}收敛,那么该数列必定有界。推论:无界数列必定发散;数列有界,不一定收敛;数列发散不一定无界。数列有界是数列收敛的必要条件,但不是充分条件。
保号性,如果数列{Xn}收敛于a,且a>0(或a<0),那么存在正整数N,当n>N时,都有Xn>0(或Xn<0)。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询