设函数f(x)是定义在【0,+无穷】上的增函数,并且满足f(xy)=f(x)+f(y),若f(3)=1,且f(a)大
设函数f(x)是定义在【0,+无穷】上的增函数,并且满足f(xy)=f(x)+f(y),若f(3)=1,且f(a)大于f(a-1)+2求实数a的取值范围。要理由哦...
设函数f(x)是定义在【0,+无穷】上的增函数,并且满足f(xy)=f(x)+f(y),若f(3)=1,且f(a)大于f(a-1)+2求实数a的取值范围。要理由哦
展开
2个回答
2013-09-07
展开全部
因为f(xy)=f(x)+f(y),f(3)=1
又因为f(a)>f(a-1)+2,所以得f(a)>f(a-1)+f(3)+f(3)
所以得f(a)>f(9a-9) (将f(a-1)和f(3)用公式得出f(3a-3)再将f(3a-3)和f(3)公式得出f(9a-a)
因为在(0,+无穷大为增函数)
所以a>9a-9且a-1>0
所以1<a<9/8
又因为f(a)>f(a-1)+2,所以得f(a)>f(a-1)+f(3)+f(3)
所以得f(a)>f(9a-9) (将f(a-1)和f(3)用公式得出f(3a-3)再将f(3a-3)和f(3)公式得出f(9a-a)
因为在(0,+无穷大为增函数)
所以a>9a-9且a-1>0
所以1<a<9/8
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询