sinxcosx/(sinx+cosx)的不定积分怎样计算?

 我来答
Dilraba学长
高粉答主

2019-06-07 · 听从你心 爱你所爱 无问西东
Dilraba学长
采纳数:1107 获赞数:411018

向TA提问 私信TA
展开全部

∫ (sinxcosx)/(sinx + cosx) dx=(1/2)(- cosx + sinx) - [1/(2√2)]ln|csc(x + π/4) - cot(x + π/4)| + C。C为积分常数。

解答过程如下:

∫ (sinxcosx)/(sinx + cosx) dx

= (1/2)∫ (2sinxcosx)/(sinx + cosx) dx

= (1/2)∫ [(1 + 2sinxcosx) - 1]/(sinx + cosx) dx

= (1/2)∫ (sin²x + 2sinxcosx + cos²x)/(sinx + cosx) dx - (1/2)∫ dx/(sinx + cosx)

= (1/2)∫ (sinx + cosx)²/(sinx + cosx) dx - (1/2)∫ dx/[√2sin(x + π/4)]

= (1/2)∫ (sinx + cosx) dx - [1/(2√2)]∫ csc(x + π/4) dx

= (1/2)(- cosx + sinx) - [1/(2√2)]ln|csc(x + π/4) - cot(x + π/4)| + C

记作∫f(x)dx或者∫f(高等微积分中常省去dx),即∫f(x)dx=F(x)+C。其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数或积分常量,求已知函数的不定积分的过程叫做对这个函数进行不定积分。

扩展资料

常用积分公式:

1)∫0dx=c

2)∫x^udx=(x^(u+1))/(u+1)+c

3)∫1/xdx=ln|x|+c

4)∫a^xdx=(a^x)/lna+c

5)∫e^xdx=e^x+c

6)∫sinxdx=-cosx+c

7)∫cosxdx=sinx+c

小小芝麻大大梦
高粉答主

2019-03-20 · 每个回答都超有意思的
知道大有可为答主
回答量:2.1万
采纳率:98%
帮助的人:936万
展开全部

∫ (sinxcosx)/(sinx + cosx) dx=(1/2)(- cosx + sinx) - [1/(2√2)]ln|csc(x + π/4) - cot(x + π/4)| + C。C为积分常数。

解答过程如下:

∫ (sinxcosx)/(sinx + cosx) dx

= (1/2)∫ (2sinxcosx)/(sinx + cosx) dx

= (1/2)∫ [(1 + 2sinxcosx) - 1]/(sinx + cosx) dx

= (1/2)∫ (sin²x + 2sinxcosx + cos²x)/(sinx + cosx) dx - (1/2)∫ dx/(sinx + cosx)

= (1/2)∫ (sinx + cosx)²/(sinx + cosx) dx - (1/2)∫ dx/[√2sin(x + π/4)]

= (1/2)∫ (sinx + cosx) dx - [1/(2√2)]∫ csc(x + π/4) dx

= (1/2)(- cosx + sinx) - [1/(2√2)]ln|csc(x + π/4) - cot(x + π/4)| + C

扩展资料:

常用积分公式:

1)∫0dx=c 

2)∫x^udx=(x^(u+1))/(u+1)+c

3)∫1/xdx=ln|x|+c

4)∫a^xdx=(a^x)/lna+c

5)∫e^xdx=e^x+c

6)∫sinxdx=-cosx+c

7)∫cosxdx=sinx+c

8)∫1/(cosx)^2dx=tanx+c

9)∫1/(sinx)^2dx=-cotx+c

10)∫1/√(1-x^2) dx=arcsinx+c

求不定积分的方法:

第一类换元其实就是一种拼凑,利用f'(x)dx=df(x);而前面的剩下的正好是关于f(x)的函数,再把f(x)看为一个整体,求出最终的结果。(用换元法说,就是把f(x)换为t,再换回来)。

分部积分,就那固定的几种类型,无非就是三角函数乘上x,或者指数函数、对数函数乘上一个x这类的,记忆方法是把其中一部分利用上面提到的f‘(x)dx=df(x)变形,再用∫xdf(x)=f(x)x-∫f(x)dx这样的公式,当然x可以换成其他g(x)。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
fin3574
高粉答主

推荐于2019-09-08 · 你好啊,我是fin3574,請多多指教
fin3574
采纳数:21378 获赞数:134570

向TA提问 私信TA
展开全部
∫ (sinxcosx)/(sinx + cosx) dx
= (1/2)∫ (2sinxcosx)/(sinx + cosx) dx
= (1/2)∫ [(1 + 2sinxcosx) - 1]/(sinx + cosx) dx
= (1/2)∫ (sin²x + 2sinxcosx + cos²x)/(sinx + cosx) dx - (1/2)∫ dx/(sinx + cosx)
= (1/2)∫ (sinx + cosx)²/(sinx + cosx) dx - (1/2)∫ dx/[√2sin(x + π/4)]
= (1/2)∫ (sinx + cosx) dx - [1/(2√2)]∫ csc(x + π/4) dx
= (1/2)(- cosx + sinx) - [1/(2√2)]ln|csc(x + π/4) - cot(x + π/4)| + C
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
xming778
2022-04-18
知道答主
回答量:1
采纳率:0%
帮助的人:360
展开全部

解题过程如图

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
茹翊神谕者

2020-10-06 · 奇文共欣赏,疑义相与析。
茹翊神谕者
采纳数:3365 获赞数:25139

向TA提问 私信TA
展开全部

详情如图所示,

有任何疑惑,欢迎追问

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 3条折叠回答
收起 更多回答(4)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式