(1+sint)(cost的平方)的积分是什么?谢谢老师
1个回答
展开全部
(1+sint)(cost)^2dt
=(cost)^2dt+sint*(cost)^2dt
(cost)^2dt=(1+cos2t)/2dt=1/2dt+cos(2x)d(2x)/4
(cost)^2dt积分=x/2+sin(2x)/4+C
sint*(cost)^2dt=-(cost)^2dcost
=-[d(cost)^3]/3
sint*(cost)^2dt积分=-[(cost)^3]/3+c
(1+sint)(cost)^2积分=x/2+[sin(2x)]/4-[(cost)^3]/3+C
=(cost)^2dt+sint*(cost)^2dt
(cost)^2dt=(1+cos2t)/2dt=1/2dt+cos(2x)d(2x)/4
(cost)^2dt积分=x/2+sin(2x)/4+C
sint*(cost)^2dt=-(cost)^2dcost
=-[d(cost)^3]/3
sint*(cost)^2dt积分=-[(cost)^3]/3+c
(1+sint)(cost)^2积分=x/2+[sin(2x)]/4-[(cost)^3]/3+C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询