高数积分题求解
展开全部
let
x=sinu
dx=cosu du
∫dx/[x+√(1-x^2)]
=∫cosu /(sinu+cosu) du
=(1/2) ∫[ ( sinu +cosu ) + (cosu-sinu) ]/(sinu+cosu) du
=(1/2)[ ∫ du + ∫ (cosu-sinu) /(sinu+cosu) du ]
=(1/2) [ u + ln|sinu+cosu| ] +C
=(1/2) [ arcsinx + ln|x+√(1-x^2)| ] +C
x=sinu
dx=cosu du
∫dx/[x+√(1-x^2)]
=∫cosu /(sinu+cosu) du
=(1/2) ∫[ ( sinu +cosu ) + (cosu-sinu) ]/(sinu+cosu) du
=(1/2)[ ∫ du + ∫ (cosu-sinu) /(sinu+cosu) du ]
=(1/2) [ u + ln|sinu+cosu| ] +C
=(1/2) [ arcsinx + ln|x+√(1-x^2)| ] +C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
令 x = sint, 则 I = ∫costdt/(sint+cost),
令 cost/(sint+cost) = a(sint+cost)/(sint+cost) + b(cost-sint)/(sint+cost)
= [(a-b)sint+(a+b)cost]/(sint+cost), 得 a-b=0, a+b=1,
解得 a = 1/2, b = 1/2
I = ∫costdt/(sint+cost) = (1/2)∫[1+(cost-sint)/(sint+cost)]dt
= (1/2)[t + ln|sint+cost|] + C = (1/2)[arcsinx + ln|x+√(1-x^2)|] + C
令 cost/(sint+cost) = a(sint+cost)/(sint+cost) + b(cost-sint)/(sint+cost)
= [(a-b)sint+(a+b)cost]/(sint+cost), 得 a-b=0, a+b=1,
解得 a = 1/2, b = 1/2
I = ∫costdt/(sint+cost) = (1/2)∫[1+(cost-sint)/(sint+cost)]dt
= (1/2)[t + ln|sint+cost|] + C = (1/2)[arcsinx + ln|x+√(1-x^2)|] + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询