在三角形ABC中,角C=90度,BC=6,AC=8,AB=10,求边AB上的高的长是多少? 40
利用三角形的面积公式:
∵S=1/2*底*高
∴AB*CD=48
10*CD=48
CD=4.8
三角形是由同一平面内不在同一直线上的三条线段‘首尾’顺次连接所组成的封闭图形,在数学、建筑学有应用。
常见的三角形按边分有普通三角形(三条边都不相等),等腰三角(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形);按角分有直角三角形、锐角三角形、钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。
扩展资料:
按角分
判定法一:
1、锐角三角形:三角形的三个内角都小于90度。
2、直角三角形:三角形的三个内角中一个角等于90度,可记作Rt△。
3、钝角三角形:三角形的三个内角中有一个角大于90度。
判定法二:
1、锐角三角形:三角形的三个内角中最大角小于90度。
2、直角三角形:三角形的三个内角中最大角等于90度。
3、钝角三角形:三角形的三个内角中最大角大于90度,小于180度。
其中锐角三角形和钝角三角形统称为斜三角形。
五心、四圆、三点、一线:这些是三角形的全部特殊点,以及基于这些特殊点的相关几何图形。“五心”指重心、垂心、内心、外心和旁心;“四圆”为内切圆、外接圆、旁切圆和欧拉圆;“三点”是勒莫恩点、奈格尔点和欧拉点;“一线”即欧拉线。
五心的距离:
OH²=9R²–(a²+b²+c²)。
OG²=R²–(a²+b²+c²)/9。
OI²=R²–abc/(a+b+c)=R² – 2Rr。
GH²=4OG²。
GI²=(p²+5r²–16Rr)/9。
HI²=4R²-p²+3r²+4Rr=4R²+2r²-(a²+b²+c²)/2。
其中,R是外接圆半径;r是内切圆半径。
参考资料:百度百科——三角形
所以:三角形abc是直角三角形(或RT三角形ABC)
所以:AB边上的高等于AC(因为直角三角形的三条高汇聚于三角形的边上的一个顶点)
所以:AB边上的高等于8
∵S=1/2*底*高
∴AB*CD=48
10*CD=48
CD=4.8
6x8=10x高
高=4.8