一阶非齐次线性方程的通解?

这个是怎么变化的呀看不懂讲详细一点这个划线部分从左到右怎么变的... 这个是怎么变化的呀 看不懂 讲详细一点

这个划线部分从左到右怎么变的
展开
 我来答
小阳同学
2020-12-28 · 知道合伙人教育行家
小阳同学
知道合伙人教育行家
采纳数:10 获赞数:30128
江苏省高等数学竞赛二等奖

向TA提问 私信TA
展开全部

一阶线性非齐次微分方程 y'+p(x)y=q(x),

通解为 y=e^[-∫p(x)dx]{∫q(x)e^[∫p(x)dx]dx+C},

用的方法是先解齐次方程,再用参数变易法求解非齐次;

扩展资料:

微分方程伴随着微积分学一起发展起来的。微积分学的奠基人Newton和Leibniz的著作中都处理过与微分方程有关的问题。微分方程的应用十分广泛,可以解决许多与导数有关的问题。物理中许多涉及变力的运动学、动力学问题,如空气的阻力为速度函数的落体运动等问题,很多可以用微分方程求解。此外,微分方程在化学、工程学、经济学和人口统计等领域都有应用。

数学领域对微分方程的研究着重在几个不同的面向,但大多数都是关心微分方程的解。只有少数简单的微分方程可以求得解析解。不过即使没有找到其解析解,仍然可以确认其解的部分性质。在无法求得解析解时,可以利用数值分析的方式,利用电脑来找到其数值解。 动力系统理论强调对于微分方程系统的量化分析,而许多数值方法可以计算微分方程的数值解,且有一定的准确度。

富港检测技术(东莞)有限公司_
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
教育小百科达人
2020-12-25 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:473万
展开全部

回答过程如下:



对增广矩阵B施行初等行变换化为行阶梯形。若R(A)<R(B),则方程组无解。若R(A)=R(B),则进一步将B化为行最简形。

设R(A)=R(B)=r;把行最简形中r个非零行的非0首元所对应的未知数用其余n-r个未知数(自由未知数)表示即可写出含n-r个参数的通解。

扩展资料:

系数矩阵常常用来表示一些项目的数学关系,比如通过此类关系系数矩阵来证明各项目的正反比关系。

系数矩阵的秩等于增广矩阵的秩,即rank(A)=rank(A, b)(否则为无解)。非齐次线性方程组有唯一解的充要条件是rank(A)=n。非齐次线性方程组有无穷多解的充要条件是rank(A)<n。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
帐号已注销
2020-12-28 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:166万
展开全部

这个是用的一阶非齐次线性方程公式法,具体如下:

y'+p(x)y=q(x)的通解为:

y=e^-∫p(x)dx[∫q(x)(e^∫p(x)dx)dx+C]

设R(A)=R(B)=r;把行最简形中r个非零行的非0首元所对应的未知数用其余n-r个未知数(自由未知数)表示即可写出含n-r个参数的通解。

扩展资料:

非齐次线性方程组Ax=b的求解步骤:

(1)对增广矩阵B施行初等行变换化为行阶梯形。若R(A)<R(B),则方程组无解。

(2)若R(A)=R(B),则进一步将B化为行最简形。

(3)设R(A)=R(B)=r;把行最简形中r个非零行的非0首元所对应的未知数用其余n-r个未知数(自由未知数)表示,并令自由未知数分别等于即可写出含n-r个参数的通解。

参考资料来源:百度百科-非齐次线性方程组

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
花果山的果1229
2019-11-10 · TA获得超过183个赞
知道答主
回答量:85
采纳率:66%
帮助的人:11.1万
展开全部
这是公式,y'+P(x)y=Q(x)的通解形式是
追问
这个公式我知道呀,我是想问图中这个公式是怎么从左到右变换成普通方程的形式的
追答

希望对你有所帮助,希望采纳

本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
qetu1oadgjl
2019-11-10 · TA获得超过767个赞
知道小有建树答主
回答量:692
采纳率:95%
帮助的人:25.9万
展开全部
这个是用的一阶非齐次线性方程公式法,具体如下:
y'+p(x)y=q(x)的通解为:
y=e^-∫p(x)dx[∫q(x)(e^∫p(x)dx)dx+C]
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(4)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式