求解高数极限第七题
展开全部
原式=lim(x->π/2)[(sinx)^tanx]
=lim(x->π/2){e^[tanx*ln(sinx)]}
=e^{lim(x->π/2)[tanx*ln(sinx)]}
=e^{lim(x->π/2)[ln(sinx)/cotx]}
=e^[lim(x->π/2)(-cotx/csc²x)]
=e^[lim(x->π/2)(-sinx*cosx)]
=e^0
=1
=lim(x->π/2){e^[tanx*ln(sinx)]}
=e^{lim(x->π/2)[tanx*ln(sinx)]}
=e^{lim(x->π/2)[ln(sinx)/cotx]}
=e^[lim(x->π/2)(-cotx/csc²x)]
=e^[lim(x->π/2)(-sinx*cosx)]
=e^0
=1
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询