曲线y=(x-1)(x-2)^2(x-3)^3(x-4)^4的一个拐点是?
2个回答
展开全部
拐点,又称反曲点,在数学上指改变曲线向上或向下方向的点,直观地说拐点是使切线穿越曲线的点(即曲线的凹凸分界点)。若该曲线图形的函数在拐点有二阶导数,则二阶导数在拐点处异号(由正变负或由负变正)或不存在。
设函数y=f(x)在点  的某邻域内连续,若(  ,f(  ))是曲线y=f(x)凹与凸的分界点,则称(  ,f(  ))为曲线y=f(x)的拐点。[1]
注:拐点(  ,f(  ))是曲线上的一点,它有横坐标和纵坐标,不要只把横坐标当成拐点。
可以按下列步骤来判断区间I上的连续曲线y=f(x)的拐点:
⑴求f''(x);
⑵令f''(x)=0,解出此方程在区间I内的实根,并求出在区间I内f''(x)不存在的点;
⑶对于⑵中求出的每一个实根或二阶导数不存在的点  ,检查f''(x)在  左右两侧邻近的符号,那么当两侧的符号相反时,点(  ,f(  ))是拐点,当两侧的符号相同时,点(  ,f(  ))不是拐点。
希望我能帮助你解疑释惑。
设函数y=f(x)在点  的某邻域内连续,若(  ,f(  ))是曲线y=f(x)凹与凸的分界点,则称(  ,f(  ))为曲线y=f(x)的拐点。[1]
注:拐点(  ,f(  ))是曲线上的一点,它有横坐标和纵坐标,不要只把横坐标当成拐点。
可以按下列步骤来判断区间I上的连续曲线y=f(x)的拐点:
⑴求f''(x);
⑵令f''(x)=0,解出此方程在区间I内的实根,并求出在区间I内f''(x)不存在的点;
⑶对于⑵中求出的每一个实根或二阶导数不存在的点  ,检查f''(x)在  左右两侧邻近的符号,那么当两侧的符号相反时,点(  ,f(  ))是拐点,当两侧的符号相同时,点(  ,f(  ))不是拐点。
希望我能帮助你解疑释惑。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询