全等三角形的一些重要推论和一些注意事项
2013-09-08
展开全部
全等三角形 全等三角形的定义 两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、翻折等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形。简单的说就是,能够完全重合的两个三角形叫做全等三角形,“全等”用符号“≌”表示,读作“全等于”。而两个三角形全等的判定是几何证明的有力工具。 当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。 由此,可以得出:全等三角形的对应边相等,对应角相等。 三角形全等的判定公理及推论 1、三组对应边分别相等的两个三角形全等(简称SSS)。 2、有两边及其夹角对应相等的两个三角形全等(SAS)。 3、有两角及其夹边对应相等的两个三角形全等(ASA) 注:S是边的英文缩写,A是角的英文缩写 由3可推到 4、有两角及一角的对边对应相等的两个三角形全等(AAS) 5、直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL) 注意:在全等的判定中,没有AAA和SSA,这两种情况都不能唯一确定三角形的形状。 全等三角形的性质 1、全等三角形的对应角相等、对应边相等。 2、线段垂直平分线上的点到线段两端点的距离相等。 3、角平分线上的点到角两边的距离相等。 全等三角形的运用 1、性质中三角形全等是条件,结论是对应角、对应边相等。 而全等的判定却刚好相反。 2、利用性质和判定,学会准确地找出两个全等三角形中的对应边与对应角是关键。在写两个三角形全等时,一定把对应的顶点,角、边的顺序写一致,为找对应边,角提供方便。参考资料: http://baike.baidu.com/view/401.htm
2013-09-08
展开全部
全等三角形的条件是边角边,角边角,边边边 如果全等,则相应的边想等,相应的角相等
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询