高中数学中的换元法是什么?
数学中的换元法是怎么回事?例如:y=ax+b+√cx+d(a,b,c∈R,ac不等于0)怎么换元?另外什么是分离常数?一般步骤是什么?...
数学中的换元法是怎么回事? 例如:y=ax+b+√cx+d (a,b,c∈R,ac不等于0)怎么换元? 另外什么是分离常数?一般步骤是什么?
展开
2013-09-09
展开全部
解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。换元的方法有:局部换元、三角换元、均值换元等。局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现。例如解不等式:4 +2 -2≥0,先变形为设2 =t(t>0),而变为熟悉的一元二次不等式求解和指数方程的问题。三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。如求函数y= + 的值域时,易发现x∈[0,1],设x=sin α ,α∈[0, ],问题变成了熟悉的求三角函数值域。为什么会想到如此设,其中主要应该是发现值域的联系,又有去根号的需要。如变量x、y适合条件x +y =r (r>0)时,则可作三角代换x=rcosθ、y=rsinθ化为三角问题。均值换元,如遇到x+y=S形式时,设x= +t,y= -t等等。我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。如上几例中的t>0和α∈[0, ]。
2013-09-09
展开全部
你那个不行 换元法是用一个东西代替另外几个东西,起到简化的作用 例如y=a+z+s+x b=z+s+x 得出y=a+b
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-09-09
展开全部
这个用不到换元,换元是把一个复杂的式子换成一个简单的式子
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询