
设随机变量X与Y相互独立,X的概率分布为P{X=i}=1/3(i=-1,0,1)
设随机变量X与Y相互独立,X的概率分布为P{X=i}=1/3(i=-1,0,1),Y的概率密度为fy(y)=1(0<=Y<1),其他0,记Z=X+Y求Z的概率密度fZ(z...
设随机变量X与Y相互独立,X的概率分布为P{X=i}=1/3(i=-1,0,1),Y的概率密度为fy(y)=1(0<=Y<1),其他0,记Z=X+Y
求Z的概率密度fZ(z)
P{X+Y<=Z}=P{X+Y<=Z,X=-1}+P{X+Y<=Z,X=0}+P{X+Y<=Z,X=1}
=P{X=-1}P{X+Y<=Z|X=-1}+P{X=0}P{X+Y<=Z|X=0}+P{X=1}P{X+Y<=Z|X=1}
=1/3P{Y-1<=Z}+1/3P{Y<=Z}+1/3P{Y+1<=Z}
=(1/3)*(P{Y<=z+1}+P{Y<=z}+P{Y<=z-1})
=1/3
也就是说(P{Y<=z+1}+P{Y<=z}+P{Y<=z-1})=1?是完备事件组?怎么理解呢? 展开
求Z的概率密度fZ(z)
P{X+Y<=Z}=P{X+Y<=Z,X=-1}+P{X+Y<=Z,X=0}+P{X+Y<=Z,X=1}
=P{X=-1}P{X+Y<=Z|X=-1}+P{X=0}P{X+Y<=Z|X=0}+P{X=1}P{X+Y<=Z|X=1}
=1/3P{Y-1<=Z}+1/3P{Y<=Z}+1/3P{Y+1<=Z}
=(1/3)*(P{Y<=z+1}+P{Y<=z}+P{Y<=z-1})
=1/3
也就是说(P{Y<=z+1}+P{Y<=z}+P{Y<=z-1})=1?是完备事件组?怎么理解呢? 展开
1个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询