展开全部
这不就是常规题目吗?一元二次方程有实数根,就是判别式Δ≥0,也就是b²-4ac≥0,这个方程a=1,b=-6,c=M-2
所以要求(-6)²-4×1×(M-2)≥0,也就是36-4M+8≥0,解得M≤11。
所以M≤11时有实数根。具体实数根是什么呢?M范围都有了,就把M当成已知数,实数根写成M的一个式子即可。
用它求根公式:
x1=(-b+√Δ)/2a=[6+√(44-4M)]/2=3+2√(11-M)
x2=3-2√(11-M)
主要就是判别式、求根公式这两个概念,要好好弄清楚。不会的知识可以看课本复习。
所以要求(-6)²-4×1×(M-2)≥0,也就是36-4M+8≥0,解得M≤11。
所以M≤11时有实数根。具体实数根是什么呢?M范围都有了,就把M当成已知数,实数根写成M的一个式子即可。
用它求根公式:
x1=(-b+√Δ)/2a=[6+√(44-4M)]/2=3+2√(11-M)
x2=3-2√(11-M)
主要就是判别式、求根公式这两个概念,要好好弄清楚。不会的知识可以看课本复习。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询