已知函数f(x)=-根号3sin2x+sinxcosx求f(x)在区间[0,π/2]上的最大值和最
已知函数f(x)=-根号3sin2x+sinxcosx求f(x)在区间[0,π/2]上的最大值和最小值(2)因为x∈(0,π/2)==2x+π/3∈(π/3,4π/3)则...
已知函数f(x)=-根号3sin2x+sinxcosx求f(x)在区间[0,π/2]上的最大值和最小值
(2)因为x∈(0,π/2) ==2x+π/3∈(π/3,4π/3)
则sin(2x+π/3)∈(-√3/2,1]
==sin(2x+π/3)-√3/2∈(-√3,(2-√3)/2
为什么sin(2x+π/3)∈(-√3/2,1] 展开
(2)因为x∈(0,π/2) ==2x+π/3∈(π/3,4π/3)
则sin(2x+π/3)∈(-√3/2,1]
==sin(2x+π/3)-√3/2∈(-√3,(2-√3)/2
为什么sin(2x+π/3)∈(-√3/2,1] 展开
展开全部
f(x)=-√3(sinx)^2+sinxcosx
=(1/2)[-√3(1-cos2x)+sin2x]
=sin(2x+π/3)-√3/2,
x∈(0,π/2),
∴2x+π/3∈(π/3,4π/3),
sinu在(π/3,π/2]↑,在[π/2,4π/3)↓,
sin(π/3)=√3/2,
sin(4π/3)=-sin(π/3)=-√3/2,
sin(π/2)=1为最大值,由函数的连续性知,
sin(2x+π/3)∈(-√3/2,1].
=(1/2)[-√3(1-cos2x)+sin2x]
=sin(2x+π/3)-√3/2,
x∈(0,π/2),
∴2x+π/3∈(π/3,4π/3),
sinu在(π/3,π/2]↑,在[π/2,4π/3)↓,
sin(π/3)=√3/2,
sin(4π/3)=-sin(π/3)=-√3/2,
sin(π/2)=1为最大值,由函数的连续性知,
sin(2x+π/3)∈(-√3/2,1].
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询