关于对数函数的讲解
1个回答
展开全部
对数函数性质:当a>0且a≠1时,M>0,N>0,那么有(1)log(a)(MN)=log(a)(M)+log(a)(N);
(2)log(a)(M/N)=log(a)(M)-log(a)(N);
(3)log(a)(M^n)=nlog(a)(M)
(n∈R)
(4)log(a^n)(M)=1/nlog(a)(M)(n∈R)
(5)
换底公式
:
log(A)M=log(b)M/log(b)A
(b>0且b≠1)
(6)a^(log(b)n)=n^(log(b)a)
(2)log(a)(M/N)=log(a)(M)-log(a)(N);
(3)log(a)(M^n)=nlog(a)(M)
(n∈R)
(4)log(a^n)(M)=1/nlog(a)(M)(n∈R)
(5)
换底公式
:
log(A)M=log(b)M/log(b)A
(b>0且b≠1)
(6)a^(log(b)n)=n^(log(b)a)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询