避免铸造出现气孔的措施有:
1、控制金属液的含气量,熔炼金属时,要尽量减少气体元素溶入金属液中,主要取决于所用原材料,合理的熔炼操作和合适的熔炼设备。
2、减少砂型(芯)在浇注时的发气量。
3、采用一定的措施使浇注时产生的气体容易从砂型中排出。如保证砂型有必须的透气性,多扎出气孔,使用薄壁或空心和中间填焦炭的砂芯,避免大平面在水平浇注位置,设置出气口,适当的提高浇注温度和注意引气等。
4、提高气体进入金属液的阻力。例如保证直浇道有所需的高度和金属液在型内的上升速度,在砂芯(型)表面实用涂料以减小砂型(芯)表面孔隙等。
5、浇筑时保证受热均匀。例如呋喃树脂粘结剂铸型,对浇注温度很敏感,小于1350度不会出现热皮下气孔,型腔各部分受热程度不同也会在热区产生热皮下气孔,所以浇注系统应将金属液分散引入型腔,使其热场均匀,缩短充型金属液流动距离,不使型腔局部受热过剧而使呋喃树脂分解。
扩展资料
一、侵入性气孔这种气孔的数量较少,尺寸较大,多产生在铸件外表面某些部位,呈梨形或圆球形。主要是由于铸型或砂芯产生的气体侵入金属液的未能逸出而造成。
防止措施:
(1)减少发气量:控制型砂或芯砂中发气物质的含量,湿型砂的含水量不能过高,造型与修模时脱模剂和水用量不宜过多。砂芯要保证烘干,烘干后的砂芯不宜存放太长时间,隔天使用的砂芯在使用前要回炉烘干,以防砂芯吸潮,不使用受潮、生锈的冷铁和芯撑等。
(2)改善型砂的透气性,选择合适的型空紧实度,合理安排出气眼位置以利排气,确保砂芯通气孔道畅通。
(3)适当提高浇注温度,开排气孔和排气冒口等,以利于侵入金属液的气体上浮排出。
二、析出性气孔这种气孔多而分散,一般位于铸件表面往往同批浇注的铸件大部分都发现有。这种气孔主要是由于在熔炼过程中,金属液吸收的气体在凝固前未能全部析出,便在铸件中形成许多分散的小气孔。
防止措施:
(1)采用洁净干燥的炉料,限制含气量较多的炉料使用。
(2)确保“三干”:即出铁槽、出铁口、过桥要彻底烘干。
(3)浇包要烘干,使用前最好用铁液烫过,包中有铁液,一定要在铁液表面放覆盖剂。
(4)各种添加剂(球化剂、孕育剂、覆盖剂)一不定期要保持干燥,湿度高的时候,要烘干后才能使用。
参考资料来源:百度百科-气孔
避免铸造出现气孔的措施有:
1、控制金属液的含气量,熔炼金属时,要尽量减少气体元素溶入金属液中,主要取决于所用原材料,合理的熔炼操作和合适的熔炼设备。
2、减少砂型(芯)在浇注时的发气量。
3、采用一定的措施使浇注时产生的气体容易从砂型中排出。如保证砂型有必须的透气性,多扎出气孔,使用薄壁或空心和中间填焦炭的砂芯,避免大平面在水平浇注位置,设置出气口,适当的提高浇注温度和注意引气等。
4、提高气体进入金属液的阻力。例如保证直浇道有所需的高度和金属液在型内的上升速度,在砂芯(型)表面实用涂料以减小砂型(芯)表面孔隙等。
5、浇筑时保证受热均匀。例如呋喃树脂粘结剂铸型,对浇注温度很敏感,小于1350度不会出现热皮下气孔,型腔各部分受热程度不同也会在热区产生热皮下气孔,所以浇注系统应将金属液分散引入型腔,使其热场均匀,缩短充型金属液流动距离,不使型腔局部受热过剧而使呋喃树脂分解。
扩展资料
气孔根据形成原因及来源不同,可分为:
1、析出性气孔:液态金属在冷却凝固过程中,因气体溶解度下降,析出的气体来不及逸出而产生的气孔称为析出性气孔。这类气孔主要是氢气孔和氮气孔。
2、侵入性气孔:将液态金属浇入砂型时,砂型或砂芯在金属液的高温作用下会产生大量气体,随着温度的升高和气体量的增加,金属-铸型界面处气体的压力不断增大。
当界面上局部气体的压力高于外界阻力时,气体就会侵入液态金属,在型壁上形成气泡。气泡形成后将脱离型壁,浮入型腔液态金属中。当气泡来不及上浮逸出时,就会在金属中形成侵入性气孔。
3、反应性气孔:金属液浇入型腔以后,型壁受热,致使呋喃树脂分解产生原子态的氮,氢量多分压力高,氮、氢气体混入铸件表面,凝固后即产生热皮下气孔。
参考资料来源:百度百科-气孔
推荐于2018-03-14
特征:铸件中的气孔是指在铸件内部,表面或接近表面处存在的大小不等的光滑孔洞。孔壁往往还带有氧化色泽,由于气体的来源和形成原因不同,气孔的表现形式也各不相同,有侵入性气孔,析出性气孔,皮下气孔等。
1.1 侵入性气孔
这种气孔的数量较少,尺寸较大,多产生在铸件外表面某些部位,呈梨形或圆球形。主要是由于铸型或砂芯产生的气体侵入金属液的未能逸出而造成。
防止措施:
(1)减少发气量:控制型砂或芯砂中发气物质的含量,湿型砂的含水量不能过高,造型与修模时脱模剂和水用量不宜过多。砂芯要保证烘干,烘干后的砂芯不宜存放太长时间,隔天使用的砂芯在使用前要回炉烘干,以防砂芯吸潮,不使用受潮、生锈的冷铁和芯撑等。
(2)改善型砂的透气性,选择合适的型空紧实度,合理安排出气眼位置以利排气,确保砂芯通气孔道畅通。
(3)适当提高浇注温度,开排气孔和排气冒口等,以利于侵入金属液的气体上浮排出。
1.2 析出性气孔
这种气孔多而分散,一般位于铸件表面往往同批浇注的铸件大部分都发现有。这种气孔主要是由于在熔炼过程中,金属液吸收的气体在凝固前未能全部析出,便在铸件中形成许多分散的小气孔。
防止措施:
(1)采用洁净干燥的炉料,限制含气量较多的炉料使用。
(2)确保“三干”:即出铁槽、出铁口、过桥要彻底烘干。
(3)浇包要烘干,使用前最好用铁液烫过,包中有铁液,一定要在铁液表面放覆盖剂。
(4)各种添加剂(球化剂、孕育剂、覆盖剂)一不定期要保持干燥,湿度高的时候,要烘干后才能使用。
1.3 皮下气孔
这种气孔主要出现在铸件的表层皮下2~3mm处,直径为1~3mm左右。而且数量较多,铸件经热处理或粗加工去除外皮后,就会清晰地显露出来。
防止措施;
(1)适当提高浇注温度,严格控制各种添加剂的加入量,尽可能缩短浇注时间。
(2)孕育剂的加入量最好控制在(质量分数)0.4%~0.6%,同时要严格控制孕育剂中A1的质量分数,w(Al)偏高容易和型腔表面的水分发生反应:2Al+3H2O=Al2O3+3H2↑,一般情况下孕育剂含Al量不宜超过1.5%。
(3)防止铁液氧化,适当补加接力焦,严格控制进风量。
(4)在保证球化的前提下,尽量减少球化剂的加入量。
(5)浇注时在铁液表面覆盖冰晶石粉,防止铁液氧化。
(6)尽量降低型砂水分。
(7)提高浇注速度。
2 砂眼、渣孔
特征:缺陷处内部或表面充塞着型(芯)砂的小孔,称为砂眼。若缺陷形状呈不规则,内部是渣或夹杂物,则称为渣孔。
砂眼防止措施:
(1)提高型(芯)砂的强度及砂型紧实度,减少砂芯的毛刺和砂型的锐角,防止冲砂。
(2)合型前要吹干净型腔和砂芯表面的浮砂,合型后要尽快浇注。使用冷芯砂时,尽可能分散进铁液,避免冲刷造成砂眼。
(3)防止砂芯烘枯及存放时间过长。
(4)合理设计浇注系统,避免铁液对型壁冲刷力太大;浇口杯表面要光滑,不能有浮砂。
渣孔防止措施:
(1)提高铁液过热温度,球铁、蠕铁、合金铸铁应该增加扒渣次数,温度允许的情况下,浇注前静止一段时间,以利于熔渣上浮。
(2)防止铁液氧化,严格控制球化剂,孕育剂的加入量(特别是随流孕育的量),球铁采用随流孕育一定要慎重。
(3)合理设计浇注系统,放置滤网片提高档渣能力,浇注包上最好安置挡渣系统,浇注时保持不断流。
(4)球铁铸件在浇注以及铁液在型腔内流动过程中,由于铁液氧化,或者铁液所含各种元素与铸型、砂芯材料反应产生的渣,通常称之为“二次渣”(以区别于浇注前已存在的“一次渣”),这种渣形成的夹渣缺陷往往只能在断口上发现,成品铸件加工面上往往要经磁粉探伤才能发现。这种夹杂物主要是由氧化物(MgO、SiO2、Feo…)和硫化物(MgS、FeS、MnS…)及其它的夹杂物组成的。
“二次渣”的防止措施:
①严格控制铁液的残余镁量(一般质量分数控制在0.035%~0.055%,壁薄宜控制在下限,壁厚可控制在上限)。
②降低原铁液含硫量,有条件的要采取脱硫处理,并提高处理温度与浇注温度。脱硫处理可以大幅度降低原铁液含硫量,能有效地减少“二次渣”。
③适当提高球化剂的稀土含量,降低镁含量,有利于降低铁液结皮温度,减少“二次渣”。
3 缩孔、缩松
特征:在铸件的厚断面,热节处或轴心等最后凝固的地方形成表面粗糙的孔洞,并且或多或少带有树枝状结晶。孔洞大而集中的称为缩孔,小而分散的称为缩松。缩孔与缩松主要是由于金属液在冷却凝固时所产生的液态收缩与凝固收缩远大于固态收缩,并在铸件最后凝固的地方得不到金属液的补充所造成的。
2013-09-10
1.1 严格按工艺规程要求,正确处理好炉料。炉料使用前应用吹砂或其它方法去除炉料表面的锈迹、泥沙等污物,并进行炉料预热保持3h以上,严防带入水分和油污等。
1.2 坩埚、锭模、熔炼工具,使用前应将表面油污、脏物等清除干净。并预热至120℃-250℃,涂以防护涂料。
1.3 新坩埚、新砌炉子、有锈蚀的旧坩埚,使用前应用吹砂其他方法将表面清除干净,并进行烘炉处理。一般应加热至700℃-800℃,保温2h-4h,以去除坩埚所吸附的水分及其它化学物质。
1.4 已经涂料的坩埚 、锭模、熔炼工具使用前,均须预热,坩埚应预热至暗红色(500℃-600℃);熔炼工具应预热至200℃-400℃,保持2h以上(除使用感应炉熔炼合金时,坩埚可不预热外。)
2 严格执行工艺规程,力求做到快速熔炼
3 加强潮湿季节预防措施
4 精炼去气,去除铝合金中的气体<
一般情况下,所谓“去气”(又叫“除气”)就是去除合金中的气体,“精炼”就是指去除合金中的夹杂物。因铝合金熔炼时,除气和精炼两个工序多合并在一起进行,故在生产实践中习惯将这两个工序称为精炼。由于铝合金中的气体主要是氢气,去气也就是主要去除氢气。目前去气的主要办法是在铝合金中通过精炼除气剂制造大量的气体(气泡中的气体可能是铝液内部经化学反应产生的,也可能性是经由部分精炼除气剂加入直接带入的),利用分压原理,让溶解于铝液中的氢原子向气泡扩散(此时气泡的分压为零),由于气泡比重轻,当气泡上浮到铝液表面时,气泡破裂,氢气逸入大气之中,最终达到去除氢气的目的。
最常用的办法是在熔化过程中用氯盐和氯化物除气,用氯气、氮气除气,用真空除气,用超声波除气,过滤除气等方法。,常用精炼除气剂的用途见表5.采用氯盐和氯化物除气剂除气时,要用钟罩将除气剂压入坩埚底部100mm,沿坩埚直径1/3处(距坩埚内壁)的圆周匀速移动。为了不使铝液大量喷溅,除气剂可分批加入,除气结束除渣,并按表6规定的时间进行静置。
5 增加气体在合金中的溶解度
采用快速或高压下凝固的方法,提高气体在铝合金中的溶解度,促进气体来不及或不能析出,从而达到消除针孔的目的。具体方法限于篇幅,在此不做过多阐述。
6 采用工艺方法进行除气
通常情况下,砂型铸造也可以采用静置、多扎出气孔和加大冒口等方法进行去气。这里仅以金属型铸造去气预防措施为例做一简易介绍。由于金属型铸造具有无透气性特点,在设计金属型时就必须有排气预防措施,其生产中常用的排气方式有:
(1)利用分型面或型腔零件的组合面的间隙进行排气:因为金属型零件在组合时,总会有间隙,一般分型间隙在0.08mm-0.15mm之间,活动零件间隙在0.1mm-0.2mm之间,利用这些间隙可用来排气,但不允许为了排气而过分扩大间隙,造成金属液阻塞,从而使铸件上毛刺增加,降低铸件尺寸精度。
(2)开排气槽:即在分型面或型腔零件的组合面上,芯座与顶杆表面上做排气槽,这样既能排气,又能蓄气,阻止液体金属流入,故在金属型铸造和金属型低压铸造时被广泛采用。
(3)设排气孔:排气孔一般开设在金属型的最高处,或金属型内可能产生“气阻”的地方。
(4)设计排气塞:排气塞是金属型常用的排气设施。在一平面上需要设制数个排气塞时,可用一个排气环来代替,将它设计在型腔的“气阻”处,或型腔的大平面上,以便排气畅通。如在铸件肥厚部分设计排气塞,排气塞可用导热性好的铜制作,同时还可以起到加强铸件冷却的作用。排气塞安装的位置和数量,常在金属型修正时确定。在金属型小批量生产时,为简化排气塞的制作,常在需要设置排气塞的地方,钻ф5-10毫米的小孔,孔内塞以水玻璃砂,也可以起到排气塞的作用。
7.预防铝合金铸件气孔形成应遵循的工艺原则,可以用“防”、“排”、“溶”三字工艺原则来概括。
“防”:就是要防止水分及各种污物进入坩埚或熔炉中。
“排”:就是要排除铝液中的氧化夹杂和氢气,因为只有有效去除悬浮在铝液中的弥散状的夹杂物(主要是Al2O3),才能防止铝液增氢,消除去氢障碍,从而获得纯净的铝液,浇出合格的铸件。“渣既尽,气必除”说的就是这个意思。
“溶”:就是要使铝液中的氢在凝固时能部分地或者全部地固溶在合金组织中,不致在铸件中形成气孔。
因此,在铝合金熔炼安排和选择“防”、“排”、“溶”三套工艺措施时,我们必须遵循“以防为主,以排为辅”的工艺原则,但最佳的熔炼或重熔方法,着眼点应仍放在“防”字上。
2013-09-10
砂型要烘干