勾股定理逆定理
展开全部
如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形。
最长边所对的角为直角。勾股定理的逆定理是判断三角形是否为锐角、直角或钝角三角形的一个简单的方法。
若c为最长边,且a_+b_=c_,则△ABC是直角三角形。如果a_+b_>c_,则△ABC是锐角三角形。如果a_+b_<c_,则△ABC是钝角三角形。
勾股定理是一个基本的几何定理,在中国,《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理;br三国时代的蒋铭祖对《蒋铭祖算经》内的勾股定理作出了详细注释,又给出了另外一个证明。
最长边所对的角为直角。勾股定理的逆定理是判断三角形是否为锐角、直角或钝角三角形的一个简单的方法。
若c为最长边,且a_+b_=c_,则△ABC是直角三角形。如果a_+b_>c_,则△ABC是锐角三角形。如果a_+b_<c_,则△ABC是钝角三角形。
勾股定理是一个基本的几何定理,在中国,《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理;br三国时代的蒋铭祖对《蒋铭祖算经》内的勾股定理作出了详细注释,又给出了另外一个证明。
展开全部
定义
在一个三角形中,两条边的平方和等于另一条边的平方,那么这个三角形就是直角三角形。这就是勾股定理的逆定理。概论勾股定理的逆定理是判断三角形为锐角或钝角的一个简单的方法,其中c为最长边:如果A×A+B×B=C×C,则△ABC是直角三角形。如果A×A+B×B>C×C,则△ABC是锐角三角形。如果A×A+B×B<C×C,则△ABC是钝角三角形。
证明方法
勾股定理逆定理的证明方法?1、统一法构造一个直角三角形A'B'C'.使得两直角边为a,b由勾股定理,斜边为c。根据边边边公理。得到2个三角形全等,所以原三角形为直角三角形。2、三角函数Cos90如图:已知AB^2+BC^2=AC^2,而任一三角形的边之间均满足,AC^2=AB^2+BC^2-2AB*BA*COSB,比较两式得,COSB=0,B=90度。3、相似三角形证明依题意作△ABC,设BC=a、AC=b、AB=c,满足a^2+b^2=c^2(a的平方+b的平方=c的平方)此时,在AB边上截取点D使∠DCB=∠A,在△DCB与△ACB中,∠DBC=∠ABC∠DCB=∠A∴△DCB∽△ACB∴DC:AC=BC:AB=BD:BC∴把BC=a、AB=c代入,可求得BD=a^2∕c(c分之a的平方)把AC=b代入,可求得CD=ab∕c∴AC=AB―BC=c-(a^2∕c)(c-c分之a平方)=c^2-a^2(c平方-a平方)=b^2∕c(c分之b平方)∴在△ACD与△DCB中,DC:AD=BC:AC=BD:CD=a:b∴△ACD∽△DCB∴∠ACB=∠BDC=∠ADC=90°∴原命题得证
在一个三角形中,两条边的平方和等于另一条边的平方,那么这个三角形就是直角三角形。这就是勾股定理的逆定理。概论勾股定理的逆定理是判断三角形为锐角或钝角的一个简单的方法,其中c为最长边:如果A×A+B×B=C×C,则△ABC是直角三角形。如果A×A+B×B>C×C,则△ABC是锐角三角形。如果A×A+B×B<C×C,则△ABC是钝角三角形。
证明方法
勾股定理逆定理的证明方法?1、统一法构造一个直角三角形A'B'C'.使得两直角边为a,b由勾股定理,斜边为c。根据边边边公理。得到2个三角形全等,所以原三角形为直角三角形。2、三角函数Cos90如图:已知AB^2+BC^2=AC^2,而任一三角形的边之间均满足,AC^2=AB^2+BC^2-2AB*BA*COSB,比较两式得,COSB=0,B=90度。3、相似三角形证明依题意作△ABC,设BC=a、AC=b、AB=c,满足a^2+b^2=c^2(a的平方+b的平方=c的平方)此时,在AB边上截取点D使∠DCB=∠A,在△DCB与△ACB中,∠DBC=∠ABC∠DCB=∠A∴△DCB∽△ACB∴DC:AC=BC:AB=BD:BC∴把BC=a、AB=c代入,可求得BD=a^2∕c(c分之a的平方)把AC=b代入,可求得CD=ab∕c∴AC=AB―BC=c-(a^2∕c)(c-c分之a平方)=c^2-a^2(c平方-a平方)=b^2∕c(c分之b平方)∴在△ACD与△DCB中,DC:AD=BC:AC=BD:CD=a:b∴△ACD∽△DCB∴∠ACB=∠BDC=∠ADC=90°∴原命题得证
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
勾股定理的逆定理证明
勾股定理的逆定理是判断三角形是否为锐角、直角或钝角三角形的一个简单的方法。若c为最长边,且a_+b_=c_,则ΔABC是直角三角形;如果a_+b_>c_,则ΔABC是锐角三角形;如果a_+b_
根据余弦定理,在△ABC中,cosC=(a_+b_-c_)÷2ab。
由于a_+b_=c_,故cosC=0;
因为0°<∠C<180°,所以∠C=90°。(证明完毕)
已知在△ABC中,,求证∠C=90°
证明:作AH⊥BC于H
⑴若∠C为锐角,设BH=y,AH=x
得x_+y_=c_,
又∵a_+b_=c_,
∴a_+b_=x_+y_(A)
但a>y,b>x,∴a_+b_>x_+y_(B)
(A)与(B)矛盾,∴∠C不为锐角
⑵若∠C为钝角,设HC=y,AH=x
得a_+b_=c_=x_+(a+y)_=x_+y_+2ay+a_
∵x_+y_=b_,
得a_+b_=c_=a_+b_+2ay
2ay=0
∵a≠0,∴y=0
这与∠C是钝角相矛盾,∴∠C不为钝角
综上所述,∠C必为直角
勾股定理的逆定理是判断三角形是否为锐角、直角或钝角三角形的一个简单的方法。若c为最长边,且a_+b_=c_,则ΔABC是直角三角形;如果a_+b_>c_,则ΔABC是锐角三角形;如果a_+b_
根据余弦定理,在△ABC中,cosC=(a_+b_-c_)÷2ab。
由于a_+b_=c_,故cosC=0;
因为0°<∠C<180°,所以∠C=90°。(证明完毕)
已知在△ABC中,,求证∠C=90°
证明:作AH⊥BC于H
⑴若∠C为锐角,设BH=y,AH=x
得x_+y_=c_,
又∵a_+b_=c_,
∴a_+b_=x_+y_(A)
但a>y,b>x,∴a_+b_>x_+y_(B)
(A)与(B)矛盾,∴∠C不为锐角
⑵若∠C为钝角,设HC=y,AH=x
得a_+b_=c_=x_+(a+y)_=x_+y_+2ay+a_
∵x_+y_=b_,
得a_+b_=c_=a_+b_+2ay
2ay=0
∵a≠0,∴y=0
这与∠C是钝角相矛盾,∴∠C不为钝角
综上所述,∠C必为直角
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
楼上说错了吧。
楼主的意思是一边的平方为(a-1)^2
a^2+b^2=(a-1)^2+4a=(a+1)^2
c^2=(a+1)^2
即有直角三角形
楼主的意思是一边的平方为(a-1)^2
a^2+b^2=(a-1)^2+4a=(a+1)^2
c^2=(a+1)^2
即有直角三角形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询