假设函数f(x)和g(x)在[a,b]上存在2阶导数,并且f(a)=f(b)=g(a)=g(b)=0,g''(x)不等于0,

 我来答
茹翊神谕者

2021-09-23 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1628万
展开全部

简单计算一下即可,答案如图所示

刀淑琴蹉戊
2020-04-06 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.2万
采纳率:34%
帮助的人:916万
展开全部
(1)证明:用反证法
若存在c∈(a,b)有g(c)=0
则在[a,c]上运用罗尔定理,存在d∈(a,c)使得g'(d)=0
同理,存在e∈(c,b)使得g'(e)=0
在[d,e]上使用罗尔定理,存在f∈(d,e)使得g"(f)=0,这与g"(x)不等於0矛盾
所以(a,b)内g(x)不等於0
(2)构造函数F(x)=f(x)g'(x)-f'(x)g(x)
求导得:F'(x)=f(x)g''(x)-f''(x)g(x)
对F(x)运用罗尔定理即可
再有第一题得出g(x),g'(x)均不为0就能得出结论(PS:一位同学帮我做的)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
鄂蕊寻婉
2020-04-13 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.2万
采纳率:31%
帮助的人:1994万
展开全部
证明:用反证法
若存在c∈(a,b)有g(c)=0
则在[a,c]上运用罗尔定理,存在d∈(a,c)使得g'(d)=0
同理,存在e∈(c,b)使得g'(e)=0
在[d,e]上使用罗尔定理,存在f∈(d,e)使得g"(f)=0,这与g"(x)不等於0矛盾
所以(a,b)内g(x)不等於0
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式