已知数列An满足An>0且A1=1,An平方-2AnSn+1=0,求An
1个回答
展开全部
1.
n=1时,S1=A=1
2.
n>1时
因An=Sn-S(n-1)
所以[Sn-S(n-1)]²-2[Sn-S(n-1)]*Sn+1=0
即Sn²-2Sn*S(n-1)+S(n-1)²-2Sn²+2Sn*S(n-1)+1=0
化为
Sn²-S(n-1)²=1
所以{Sn²}是公差为1的等差数列
首项=S1²=1
故Sn²=1+(n-1)*1=n
Sn=√n
则S(n-1)=√(n-1)
所以An=Sn-S(n-1)=√n-√(n-1)
当n=1时
A1=√1-√(1-1)=1满足条件
故An=√n-√(n-1)
希望能帮到你O(∩_∩)O
n=1时,S1=A=1
2.
n>1时
因An=Sn-S(n-1)
所以[Sn-S(n-1)]²-2[Sn-S(n-1)]*Sn+1=0
即Sn²-2Sn*S(n-1)+S(n-1)²-2Sn²+2Sn*S(n-1)+1=0
化为
Sn²-S(n-1)²=1
所以{Sn²}是公差为1的等差数列
首项=S1²=1
故Sn²=1+(n-1)*1=n
Sn=√n
则S(n-1)=√(n-1)
所以An=Sn-S(n-1)=√n-√(n-1)
当n=1时
A1=√1-√(1-1)=1满足条件
故An=√n-√(n-1)
希望能帮到你O(∩_∩)O
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询