离散数学中关于自反与反自反的通俗解释

 我来答
阿肆说教育
2020-12-25 · 我是阿肆,专注于分享教育知识。
阿肆说教育
采纳数:1988 获赞数:289663

向TA提问 私信TA
展开全部

设R是A上的关系:

自反:若∀x(x∈A→<x,x>∈R),则称R在A上是自反的。

取A中任意一个元素x,在R中都满足(x,x),即称R是自反的。

反自反:若∀x(x∈A→<x,x>∉R),则称R在A上是反自反的。

取A中任意一个元素x,在R中都不满足(x,x),即称R是反自反的。

扩展资料

例1】设A={1,2,3,4},下列几个是A上的二元关系。

R1={<1,1>,<1,2>,<2,1>,<2,2>,<3,4>,<4,1>,<4,4>};

R2={<1,1>,<1,2>,<2,1>};

R3={<1,1>,<1,2>,<1,4>,<2,1>,<2,2>,<3,3>,<4,1>,<4,4>};

R4={<2,1>,<3,1>,<3,2>,<4,1>,<4,2>,<4,3>};

R5=(<1,1>,<1,2>,<1,3>,<1,4>,<2,2>,<2,3>,<2,4>,<3,3>,<3,4>,<4,4>};

R6={<3,4>}。

解: 关系R3,R5是自反的,因为它包括所有形如<a,a>的序对。关系R4,R6是反自反的,因为它不包括任何形如<a,a>的序对。

而关系R1,R2既不是自反的,也不是反自反的。因为R1中包含<1,1>,<2,2>,<4,4>,但不包含<3,3>;R2中包含<1,1>.但不包含<2,2>,<3,3>,<4,4>。

自反性和反自反性可以在关系图和关系矩阵上非常直观地反映出来。

焦梓维实冬
2020-04-10 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.2万
采纳率:26%
帮助的人:985万
展开全部
设R是A上的二元关系,
自反:任取一个A中的元素x,如果都有<x,x>在R中,那么就成R在A上是自反的
反自反:任取一个A中的元素x,如果都有<x,x>不在R中,那么就成R在A上是反自反的
在关系矩阵上的表示,
自反:主对角线上的元素都是1
反自反:主对角线上的元素都是0
在关系图上的表示,
自反:每一个顶点都有环
反自反:每一个顶点都没有环
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友6edad60a70
2020-04-04 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.2万
采纳率:27%
帮助的人:953万
展开全部
自反就是,每个元素都与自身有关系。
反自反,就是每个元素都与自身没有关系。
注意,有些关系,满足既不是自反关系,又不是反自反关系。
而空关系(关系集合中无元素),满足既是自反关系,又是反自反关系。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式