7个回答
2013-09-11
展开全部
偏导数的定义
设有二元函数z=f(x,y),点(x0,y0)是其定义域D内一点.把y固定在y0而让x在x0有增量△x,相应地函数z=f(x,y)有增量(称为对x的偏增量)△z=f(x0+△x,y0)-f(x0,y0)。
如果△z与△x之比当△x→0时的极限存在,那么此极限值称为函数z=f(x,y)在(x0,y0)处对x的偏导数(partial derivative)。记作f'x(x0,y0)。
关于对x的偏导数的问题
函数z=f(x,y)在(x0,y0)处对x的偏导数,实际上就是把y固定在y0看成常数后,一元函数z=f(x,y0)在x0处的导数
同样,把x固定在x0,让y有增量△y,如果极限存在
那么此极限称为函数z=(x,y)在(x0,y0)处对y的偏导数.记作f'y(x0,y0)
偏导数的求法
当函数z=f(x,y)在(x0,y0)的两个偏导数f'x(x0,y0)与f'y(x0,y0)都存在时,
我们称f(x,y)在(x0,y0)处可导。如果函数f(x,y)在域D的每一点均可导,
那么称函数f(x,y)在域D可导。
此时,对应于域D的每一点(x,y),必有一个对x(对y)的偏导数,因而在域D确定了一个新的二元函数,
称为f(x,y)对x(对y)的偏导函数。简称偏导数。
高阶偏导数
如果二元函数z=f(x,y)的偏导数f'x(x,y)与f'y(x,y)仍然可导,
那么这两个偏导函数的偏导数称为z=f(x,y)的二阶偏导数。
二元函数的二阶偏导数有四个:f"xx,f"xy,f"yx,f"yy.
注意:f"xy与f"yx的区别在于:前者是先对x求偏导,然后将所得的偏导函数再对y求偏导;后者是先对y求偏导再对x求偏导.当f"xy与f"yx都连续时,求导的结果与先后次序无关。
多元函数(以三元函数为例)u=f(x,y,z)如果可微,则全微分
du=f1(x,y,z)dx+f2(x,y,z)dy+f3(x,y,z)dz,
这里f1、f2、f3分别表示u对x、y、z的偏导数。
f1(x,y,z)dx称为关于x的偏微分,f2(x,y,z)dy称为关于y的偏微分,f3(x,y,z)dz称为关于z的偏微分。
全微分符合叠加原理,即全微分等于各偏微分之和。
偏微分也可以作为偏增量的近似,例如:
f(x+△x,y,z)-f(x,y,z)≈f1(x,y,z)dx。
设有二元函数z=f(x,y),点(x0,y0)是其定义域D内一点.把y固定在y0而让x在x0有增量△x,相应地函数z=f(x,y)有增量(称为对x的偏增量)△z=f(x0+△x,y0)-f(x0,y0)。
如果△z与△x之比当△x→0时的极限存在,那么此极限值称为函数z=f(x,y)在(x0,y0)处对x的偏导数(partial derivative)。记作f'x(x0,y0)。
关于对x的偏导数的问题
函数z=f(x,y)在(x0,y0)处对x的偏导数,实际上就是把y固定在y0看成常数后,一元函数z=f(x,y0)在x0处的导数
同样,把x固定在x0,让y有增量△y,如果极限存在
那么此极限称为函数z=(x,y)在(x0,y0)处对y的偏导数.记作f'y(x0,y0)
偏导数的求法
当函数z=f(x,y)在(x0,y0)的两个偏导数f'x(x0,y0)与f'y(x0,y0)都存在时,
我们称f(x,y)在(x0,y0)处可导。如果函数f(x,y)在域D的每一点均可导,
那么称函数f(x,y)在域D可导。
此时,对应于域D的每一点(x,y),必有一个对x(对y)的偏导数,因而在域D确定了一个新的二元函数,
称为f(x,y)对x(对y)的偏导函数。简称偏导数。
高阶偏导数
如果二元函数z=f(x,y)的偏导数f'x(x,y)与f'y(x,y)仍然可导,
那么这两个偏导函数的偏导数称为z=f(x,y)的二阶偏导数。
二元函数的二阶偏导数有四个:f"xx,f"xy,f"yx,f"yy.
注意:f"xy与f"yx的区别在于:前者是先对x求偏导,然后将所得的偏导函数再对y求偏导;后者是先对y求偏导再对x求偏导.当f"xy与f"yx都连续时,求导的结果与先后次序无关。
多元函数(以三元函数为例)u=f(x,y,z)如果可微,则全微分
du=f1(x,y,z)dx+f2(x,y,z)dy+f3(x,y,z)dz,
这里f1、f2、f3分别表示u对x、y、z的偏导数。
f1(x,y,z)dx称为关于x的偏微分,f2(x,y,z)dy称为关于y的偏微分,f3(x,y,z)dz称为关于z的偏微分。
全微分符合叠加原理,即全微分等于各偏微分之和。
偏微分也可以作为偏增量的近似,例如:
f(x+△x,y,z)-f(x,y,z)≈f1(x,y,z)dx。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
“偏微分就是不考虑变量之间的任何隐函数关系 只对解释表达式明确描述的函数关系作微分运算 所以偏微分必须明确指定微分变量 不是指定的微分变量一律视为常量 因此偏微分都是指偏导数 偏微分运算符“э”不能像微分运算符“d”那样单独使用 不能只写“э”,必须写成“э/эx” 所以严格来说是没有偏...”
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询